Calculating the residue of $frac{10z^4-10sin(z)}{z^3}, z(0) = 0$
$$frac{10z^4-10sin(z)}{z^3}, quad z(0) = 0.$$
I've gotten that $$operatorname{Res} = 0$$ but I'm not quite sure if that is correct, or if I have even used a correct pathway towards it. How should one work around sine (or cosine, for that matter) during residue calculations?
complex-analysis residue-calculus
add a comment |
$$frac{10z^4-10sin(z)}{z^3}, quad z(0) = 0.$$
I've gotten that $$operatorname{Res} = 0$$ but I'm not quite sure if that is correct, or if I have even used a correct pathway towards it. How should one work around sine (or cosine, for that matter) during residue calculations?
complex-analysis residue-calculus
Can you show us the pathway you chose so we can compare it with what we would do?
– Oscar Lanzi
Oct 26 '18 at 0:15
add a comment |
$$frac{10z^4-10sin(z)}{z^3}, quad z(0) = 0.$$
I've gotten that $$operatorname{Res} = 0$$ but I'm not quite sure if that is correct, or if I have even used a correct pathway towards it. How should one work around sine (or cosine, for that matter) during residue calculations?
complex-analysis residue-calculus
$$frac{10z^4-10sin(z)}{z^3}, quad z(0) = 0.$$
I've gotten that $$operatorname{Res} = 0$$ but I'm not quite sure if that is correct, or if I have even used a correct pathway towards it. How should one work around sine (or cosine, for that matter) during residue calculations?
complex-analysis residue-calculus
complex-analysis residue-calculus
edited Nov 21 '18 at 12:25
Tianlalu
3,09621038
3,09621038
asked Oct 25 '18 at 22:49
TootsieRoll
163
163
Can you show us the pathway you chose so we can compare it with what we would do?
– Oscar Lanzi
Oct 26 '18 at 0:15
add a comment |
Can you show us the pathway you chose so we can compare it with what we would do?
– Oscar Lanzi
Oct 26 '18 at 0:15
Can you show us the pathway you chose so we can compare it with what we would do?
– Oscar Lanzi
Oct 26 '18 at 0:15
Can you show us the pathway you chose so we can compare it with what we would do?
– Oscar Lanzi
Oct 26 '18 at 0:15
add a comment |
2 Answers
2
active
oldest
votes
Your answer is correct. The residue of a function is the coefficient of $z^{-1}$ of the Laurent series expansion of the function.
We obtain
begin{align*}
color{blue}{[z^{-1}]}&color{blue}{frac{10z^4-10sin z}{z^3}}\
&=[z^{-1}]left(10z-frac{10}{z^3}left(z-frac{z^3}{3!}+frac{z^5}{5!}-cdotsright)right)\
&=-10[z^{-1}]left(frac{1}{z^2}-frac{1}{3!}+frac{z^2}{5!}-cdotsright)\
&,,color{blue}{=0}
end{align*}
add a comment |
One way to work with sines and cosines in this problem is to reckon with their power series expansions found in many places, for instance here. You might also note that an even function has only even powers in its Laurent series whereas the residue comes from the $(-1)$ power, therefore even functions will have a residue of zero. Hmm, can you see why I would mention that last fact?
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2971408%2fcalculating-the-residue-of-frac10z4-10-sinzz3-z0-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Your answer is correct. The residue of a function is the coefficient of $z^{-1}$ of the Laurent series expansion of the function.
We obtain
begin{align*}
color{blue}{[z^{-1}]}&color{blue}{frac{10z^4-10sin z}{z^3}}\
&=[z^{-1}]left(10z-frac{10}{z^3}left(z-frac{z^3}{3!}+frac{z^5}{5!}-cdotsright)right)\
&=-10[z^{-1}]left(frac{1}{z^2}-frac{1}{3!}+frac{z^2}{5!}-cdotsright)\
&,,color{blue}{=0}
end{align*}
add a comment |
Your answer is correct. The residue of a function is the coefficient of $z^{-1}$ of the Laurent series expansion of the function.
We obtain
begin{align*}
color{blue}{[z^{-1}]}&color{blue}{frac{10z^4-10sin z}{z^3}}\
&=[z^{-1}]left(10z-frac{10}{z^3}left(z-frac{z^3}{3!}+frac{z^5}{5!}-cdotsright)right)\
&=-10[z^{-1}]left(frac{1}{z^2}-frac{1}{3!}+frac{z^2}{5!}-cdotsright)\
&,,color{blue}{=0}
end{align*}
add a comment |
Your answer is correct. The residue of a function is the coefficient of $z^{-1}$ of the Laurent series expansion of the function.
We obtain
begin{align*}
color{blue}{[z^{-1}]}&color{blue}{frac{10z^4-10sin z}{z^3}}\
&=[z^{-1}]left(10z-frac{10}{z^3}left(z-frac{z^3}{3!}+frac{z^5}{5!}-cdotsright)right)\
&=-10[z^{-1}]left(frac{1}{z^2}-frac{1}{3!}+frac{z^2}{5!}-cdotsright)\
&,,color{blue}{=0}
end{align*}
Your answer is correct. The residue of a function is the coefficient of $z^{-1}$ of the Laurent series expansion of the function.
We obtain
begin{align*}
color{blue}{[z^{-1}]}&color{blue}{frac{10z^4-10sin z}{z^3}}\
&=[z^{-1}]left(10z-frac{10}{z^3}left(z-frac{z^3}{3!}+frac{z^5}{5!}-cdotsright)right)\
&=-10[z^{-1}]left(frac{1}{z^2}-frac{1}{3!}+frac{z^2}{5!}-cdotsright)\
&,,color{blue}{=0}
end{align*}
answered Oct 26 '18 at 20:29


Markus Scheuer
60.2k455144
60.2k455144
add a comment |
add a comment |
One way to work with sines and cosines in this problem is to reckon with their power series expansions found in many places, for instance here. You might also note that an even function has only even powers in its Laurent series whereas the residue comes from the $(-1)$ power, therefore even functions will have a residue of zero. Hmm, can you see why I would mention that last fact?
add a comment |
One way to work with sines and cosines in this problem is to reckon with their power series expansions found in many places, for instance here. You might also note that an even function has only even powers in its Laurent series whereas the residue comes from the $(-1)$ power, therefore even functions will have a residue of zero. Hmm, can you see why I would mention that last fact?
add a comment |
One way to work with sines and cosines in this problem is to reckon with their power series expansions found in many places, for instance here. You might also note that an even function has only even powers in its Laurent series whereas the residue comes from the $(-1)$ power, therefore even functions will have a residue of zero. Hmm, can you see why I would mention that last fact?
One way to work with sines and cosines in this problem is to reckon with their power series expansions found in many places, for instance here. You might also note that an even function has only even powers in its Laurent series whereas the residue comes from the $(-1)$ power, therefore even functions will have a residue of zero. Hmm, can you see why I would mention that last fact?
answered Oct 26 '18 at 0:22
Oscar Lanzi
12.1k12036
12.1k12036
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2971408%2fcalculating-the-residue-of-frac10z4-10-sinzz3-z0-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Can you show us the pathway you chose so we can compare it with what we would do?
– Oscar Lanzi
Oct 26 '18 at 0:15