Find $k$ in Maclaurin series expansion of $frac{dy}{dx}=-frac{1}{2}+frac{1}{4}x+kx^2+…$ where...
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
add a comment |
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55
add a comment |
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.
I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.
My work
1) $f(0)=y=0$
2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$
3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$
4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$
Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$
sequences-and-series taylor-expansion
sequences-and-series taylor-expansion
edited Nov 21 '18 at 17:14
Robert Z
93.7k1061132
93.7k1061132
asked Nov 21 '18 at 15:46
Henias
615
615
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55
add a comment |
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55
1
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55
add a comment |
3 Answers
3
active
oldest
votes
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
add a comment |
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$
answered Nov 21 '18 at 15:54
Dan Kent
237
237
add a comment |
add a comment |
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
add a comment |
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
$$begin{align}
frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
&=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
&=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
&=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
&=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
end{align}$$
edited Nov 21 '18 at 16:08
answered Nov 21 '18 at 15:56
Robert Z
93.7k1061132
93.7k1061132
add a comment |
add a comment |
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
add a comment |
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$
answered Nov 21 '18 at 19:24
Mostafa Ayaz
14.1k3937
14.1k3937
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55