Find $k$ in Maclaurin series expansion of $frac{dy}{dx}=-frac{1}{2}+frac{1}{4}x+kx^2+…$ where...












2















Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$










share|cite|improve this question




















  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 '18 at 15:55


















2















Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$










share|cite|improve this question




















  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 '18 at 15:55
















2












2








2


2






Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$










share|cite|improve this question
















Given that $y=lnBigl(frac{e^{-x}+1}{2}Bigl)$, show $frac{dy}{dx}=frac{1}{2}e^{-y}-1$. Show that the series expansion of $frac{dy}{dx}$ in ascending powers of $x$, up to and including the term in $x^2$ is $-frac{1}{2}+frac{1}{4}x+kx^2+dots$ , where $k$ is to be determined.




I'm able to solve this question but I'm unsure if my $k$ value is correct. My $k$ is $0$. Am I correct? Otherwise, I might have made a mistake somewhere.



My work



1) $f(0)=y=0$



2) $frac{dy}{dx}=frac{1}{2}e^{-y}-1 $
therefore $f'(0)=-frac{1}{2}$



3) $frac{d^2y}{dx^2}=-frac{1}{2}e^{-y}cdotBig(frac{dy}{dx}Bigl) $
therefore $f''(0)=frac{1}{4}$



4) $frac{d^3y}{dx^3}=frac{1}{2}e^{-y}cdotBigl(frac{dy}{dx}Bigl)^2-frac{1}{2}e^{-y}cdotBigl(frac{d^2y}{dx^2}Bigl) $
therefore $f'''(0)=0$



Hence
$$frac{dy}{dx}=f'(0)+f''(0)x+frac{f'''(x)}{2}x^2+dots=-frac{1}{2}+frac{1}{4}x+dots$$







sequences-and-series taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 '18 at 17:14









Robert Z

93.7k1061132




93.7k1061132










asked Nov 21 '18 at 15:46









Henias

615




615








  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 '18 at 15:55
















  • 1




    Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
    – gammatester
    Nov 21 '18 at 15:55










1




1




Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55






Looks OK, but the title mismatches with the main text, where you calculate the Maclaurin expansion of $y'$.
– gammatester
Nov 21 '18 at 15:55












3 Answers
3






active

oldest

votes


















1














A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






share|cite|improve this answer





























    1














    Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
    $$begin{align}
    frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
    &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
    &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
    &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
    &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
    end{align}$$






    share|cite|improve this answer































      1














      Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1














        A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






        share|cite|improve this answer


























          1














          A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






          share|cite|improve this answer
























            1












            1








            1






            A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$






            share|cite|improve this answer












            A hint. If you set $$ u=frac{1-e^{-x}}2$$ then, as $tto0$, $u to 0$ and you can use $$ln(1-u)=-u+frac{u^2}2+o(u^3) $$ to get a Maclaurin series expansion of $$y=lnBigl(frac{e^{-x}+1}{2}Bigl).$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 21 '18 at 15:54









            Dan Kent

            237




            237























                1














                Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                $$begin{align}
                frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                end{align}$$






                share|cite|improve this answer




























                  1














                  Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                  $$begin{align}
                  frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                  &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                  &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                  &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                  &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                  end{align}$$






                  share|cite|improve this answer


























                    1












                    1








                    1






                    Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                    $$begin{align}
                    frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                    &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                    &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                    &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                    &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                    end{align}$$






                    share|cite|improve this answer














                    Yes, you are correct $k=0$. This is an alternative solution where we use the expansions of $e^t$ and $(1+t)^{-1}$ at $t=0$:
                    $$begin{align}
                    frac{dy}{dx}&=frac{2}{e^{-x}+1}cdot frac{-e^{-x}}{2} =-frac{1}{1+e^x}\
                    &=-frac{1}{1+1+x+frac{x^2}{2}+o(x^2)}\
                    &=-frac{1}{2}left(1+frac{x}{2}+frac{x^2}{4}+o(x^2)right)^{-1}\
                    &=-frac{1}{2}left(1-left(frac{x}{2}+frac{x^2}{4}right)+left(frac{x}{2}+o(x)right)^2+o(x^2)right)\
                    &=-frac{1}{2}+frac{x}{4}+underbrace{left(-frac{1}{4}+frac{1}{4}right)}_{=0}cdot x^2+ o(x^2).
                    end{align}$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Nov 21 '18 at 16:08

























                    answered Nov 21 '18 at 15:56









                    Robert Z

                    93.7k1061132




                    93.7k1061132























                        1














                        Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






                        share|cite|improve this answer


























                          1














                          Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






                          share|cite|improve this answer
























                            1












                            1








                            1






                            Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$






                            share|cite|improve this answer












                            Notice that $$2e^y=1+e^{-x}$$therefore by differentiating we have $$2y'e^y=-e^{-x}$$or equivalently$$y'=-({2e^y-1}){1over 2e^y}={1over 2}e^{-y}-1$$also we know that$$k={1over 2}{d^2yover dx^2}|_{x=0}$$since $y(0)=0$ and $y'(0)=-{1over 2}$ we obtain$$y''=-{1over 2}y'e^{-y}to k={1over 8}$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 21 '18 at 19:24









                            Mostafa Ayaz

                            14.1k3937




                            14.1k3937






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007897%2ffind-k-in-maclaurin-series-expansion-of-fracdydx-frac12-frac14%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                'app-layout' is not a known element: how to share Component with different Modules

                                android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                WPF add header to Image with URL pettitions [duplicate]