Help understanding the cause of this pattern when writing π as an infinite series with double factorials











up vote
4
down vote

favorite
2












I made a post about a year and a half ago: $pi$ as an Infinite Series using Taylor Expansion on Equation of a Circle
where essentially I used the Taylor series expansion on $ y = sqrt{r^2-x^2}$ (the equation of a circle in Cartesian coordinates with radius $r$). Integrating term by term from $0$ to $r$ in order to obtain a representation of $pi$ gave a pattern which I wrote as:
$$ pi = sum_{n=1}^infty frac{-4[(2n-3)!!]^2}{(2n-3)(2n-1)!}$$
This can be written differently as:
$$ -frac{pi}{4} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-1)(2n-2)!!}$$
Furthermore what I have noticed is (and what I'm trying to understand but cannot for some reason):
$$ frac{pi}{16} = sum_{n=1}^infty frac{(2n-7)!!}{(2n-1)(2n-2)!!}$$
$$ -frac{pi}{96} = sum_{n=1}^infty frac{(2n-9)!!}{(2n-1)(2n-2)!!}$$
$$ frac{pi}{768} = sum_{n=1}^infty frac{(2n-11)!!}{(2n-1)(2n-2)!!}$$
This pattern continues when adjusting the numerator (double factorial term) with odd integers... 5, 7, 9, 11, 13, and so on. Those series will converge to fractions of pi and alternate as positive or negative fractions of pi. I do not understand what is happening here.
Also, it is interesting to note that it seems:
$$ frac{pi}{2} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-3)(2n-2)!!}$$










share|cite|improve this question




















  • 2




    It appears that the general formula is $sum_{n=0}^{infty}frac{(2(n-k)-1)!!}{(2n-1)(2n)!!}=frac{(-1)^kpi}{2(2k)!!}$
    – Jacob
    2 days ago















up vote
4
down vote

favorite
2












I made a post about a year and a half ago: $pi$ as an Infinite Series using Taylor Expansion on Equation of a Circle
where essentially I used the Taylor series expansion on $ y = sqrt{r^2-x^2}$ (the equation of a circle in Cartesian coordinates with radius $r$). Integrating term by term from $0$ to $r$ in order to obtain a representation of $pi$ gave a pattern which I wrote as:
$$ pi = sum_{n=1}^infty frac{-4[(2n-3)!!]^2}{(2n-3)(2n-1)!}$$
This can be written differently as:
$$ -frac{pi}{4} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-1)(2n-2)!!}$$
Furthermore what I have noticed is (and what I'm trying to understand but cannot for some reason):
$$ frac{pi}{16} = sum_{n=1}^infty frac{(2n-7)!!}{(2n-1)(2n-2)!!}$$
$$ -frac{pi}{96} = sum_{n=1}^infty frac{(2n-9)!!}{(2n-1)(2n-2)!!}$$
$$ frac{pi}{768} = sum_{n=1}^infty frac{(2n-11)!!}{(2n-1)(2n-2)!!}$$
This pattern continues when adjusting the numerator (double factorial term) with odd integers... 5, 7, 9, 11, 13, and so on. Those series will converge to fractions of pi and alternate as positive or negative fractions of pi. I do not understand what is happening here.
Also, it is interesting to note that it seems:
$$ frac{pi}{2} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-3)(2n-2)!!}$$










share|cite|improve this question




















  • 2




    It appears that the general formula is $sum_{n=0}^{infty}frac{(2(n-k)-1)!!}{(2n-1)(2n)!!}=frac{(-1)^kpi}{2(2k)!!}$
    – Jacob
    2 days ago













up vote
4
down vote

favorite
2









up vote
4
down vote

favorite
2






2





I made a post about a year and a half ago: $pi$ as an Infinite Series using Taylor Expansion on Equation of a Circle
where essentially I used the Taylor series expansion on $ y = sqrt{r^2-x^2}$ (the equation of a circle in Cartesian coordinates with radius $r$). Integrating term by term from $0$ to $r$ in order to obtain a representation of $pi$ gave a pattern which I wrote as:
$$ pi = sum_{n=1}^infty frac{-4[(2n-3)!!]^2}{(2n-3)(2n-1)!}$$
This can be written differently as:
$$ -frac{pi}{4} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-1)(2n-2)!!}$$
Furthermore what I have noticed is (and what I'm trying to understand but cannot for some reason):
$$ frac{pi}{16} = sum_{n=1}^infty frac{(2n-7)!!}{(2n-1)(2n-2)!!}$$
$$ -frac{pi}{96} = sum_{n=1}^infty frac{(2n-9)!!}{(2n-1)(2n-2)!!}$$
$$ frac{pi}{768} = sum_{n=1}^infty frac{(2n-11)!!}{(2n-1)(2n-2)!!}$$
This pattern continues when adjusting the numerator (double factorial term) with odd integers... 5, 7, 9, 11, 13, and so on. Those series will converge to fractions of pi and alternate as positive or negative fractions of pi. I do not understand what is happening here.
Also, it is interesting to note that it seems:
$$ frac{pi}{2} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-3)(2n-2)!!}$$










share|cite|improve this question















I made a post about a year and a half ago: $pi$ as an Infinite Series using Taylor Expansion on Equation of a Circle
where essentially I used the Taylor series expansion on $ y = sqrt{r^2-x^2}$ (the equation of a circle in Cartesian coordinates with radius $r$). Integrating term by term from $0$ to $r$ in order to obtain a representation of $pi$ gave a pattern which I wrote as:
$$ pi = sum_{n=1}^infty frac{-4[(2n-3)!!]^2}{(2n-3)(2n-1)!}$$
This can be written differently as:
$$ -frac{pi}{4} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-1)(2n-2)!!}$$
Furthermore what I have noticed is (and what I'm trying to understand but cannot for some reason):
$$ frac{pi}{16} = sum_{n=1}^infty frac{(2n-7)!!}{(2n-1)(2n-2)!!}$$
$$ -frac{pi}{96} = sum_{n=1}^infty frac{(2n-9)!!}{(2n-1)(2n-2)!!}$$
$$ frac{pi}{768} = sum_{n=1}^infty frac{(2n-11)!!}{(2n-1)(2n-2)!!}$$
This pattern continues when adjusting the numerator (double factorial term) with odd integers... 5, 7, 9, 11, 13, and so on. Those series will converge to fractions of pi and alternate as positive or negative fractions of pi. I do not understand what is happening here.
Also, it is interesting to note that it seems:
$$ frac{pi}{2} = sum_{n=1}^infty frac{(2n-5)!!}{(2n-3)(2n-2)!!}$$







sequences-and-series convergence taylor-expansion factorial pi






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago

























asked 2 days ago









Joey Marlowe

966




966








  • 2




    It appears that the general formula is $sum_{n=0}^{infty}frac{(2(n-k)-1)!!}{(2n-1)(2n)!!}=frac{(-1)^kpi}{2(2k)!!}$
    – Jacob
    2 days ago














  • 2




    It appears that the general formula is $sum_{n=0}^{infty}frac{(2(n-k)-1)!!}{(2n-1)(2n)!!}=frac{(-1)^kpi}{2(2k)!!}$
    – Jacob
    2 days ago








2




2




It appears that the general formula is $sum_{n=0}^{infty}frac{(2(n-k)-1)!!}{(2n-1)(2n)!!}=frac{(-1)^kpi}{2(2k)!!}$
– Jacob
2 days ago




It appears that the general formula is $sum_{n=0}^{infty}frac{(2(n-k)-1)!!}{(2n-1)(2n)!!}=frac{(-1)^kpi}{2(2k)!!}$
– Jacob
2 days ago










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










Considering the definition of the Rising Factorial
$$
z^{,overline {,n,} } = {{Gamma left( {z + n} right)} over {Gamma left( z right)}}
$$

the double factorial can then be written as
$$
left( {2n - 3} right)!! = left( {2left( {n - 2} right) + 1} right)!! = 2^{,n - 1} left( {{1 over 2}} right)^{,overline {,n - 1,} }
= {{1^{,overline {,2left( {n - 1} right),} } } over {2^{,n - 1} 1^{,overline {,n - 1,} } }}
$$



We apply :

- the Gamma Duplication formula
$$
Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right)quad
$$

- the Gamma Reflection formula
$$
Gamma left( z right),Gamma left( { - z} right) = - {pi over {zsin left( {pi ,z} right)}}
$$

- and the Gauss theorem for the Hypergeometric function
$$
{}_2F_{,1} left( {left. {matrix{ {a,b} cr c cr } ,} right|;1} right)
= {{Gamma left( c right)Gamma left( {c - a - b} right)} over {Gamma left( {c - a} right)Gamma left( {c - b} right)}}
quad left| {;{mathop{rm Re}nolimits} (a + b) < {mathop{rm Re}nolimits} (c)} right.
$$



Then the sum becomes
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( {left( {2n - 3} right)!!} right)^{,2} } over {left( {2n - 3} right)left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } 1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} }
left( {2n - 1} right)1^{,overline {,2n + 1,} } }}} = cr
& = sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} } left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{Gamma left( {2n + 1} right)} over {2^{,2n} Gamma left( {n + 1} right)Gamma left( {n + 1} right)
left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{2n{{2^{,2,n - 1} } over {sqrt pi }}Gamma left( n right)Gamma left( {n + 1/2} right)} over {2^{,2n}
Gamma left( {n + 1} right)Gamma left( {n + 1} right)left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = {1 over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)} over {Gamma left( {n + 1} right)left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - 1/2} right)} over {Gamma left( {n + 1} right)
left( {n + 1/2} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)Gamma left( {n - 1/2} right)}
over {Gamma left( {n + 3/2} right)}}{1 over {n!}}} = cr
& = {1 over {4sqrt pi }}{{Gamma left( {1/2} right)Gamma left( { - 1/2} right)} over {Gamma left( {3/2} right)}}
sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} } left( { - 1/2} right)^{,overline {,n,} } }
over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {{2pi } over {4sqrt pi }}{2 over {sqrt pi }}sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} }
left( { - 1/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {}_2F_{,1} left( {left. {matrix{ {1/2, - 1/2} cr {3/2} cr } ,} right|;1} right)
= - {{Gamma left( {3/2} right)Gamma left( {3/2} right)} over {Gamma left( 1 right)Gamma left( 2 right)}} = cr
& = - {pi over 4} cr}
$$



The other sums follow a similar pattern.



In fact, following the same steps as above (here reported concisely) we reach to the general expression
$$ bbox[lightyellow] {
eqalign{
& S(m) = sumlimits_{1, le ,n} {{{left( {2n - 2m - 1} right)!!} over {left( {2n - 1} right)left( {2n - 2} right)!!}}}
= sumlimits_{0, le ,n} {{{left( {2n - 2m + 1} right)!!} over {left( {2n + 1} right)left( {2n} right)!!}}} = cr
& = {{2^{, - m} } over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - m + 3/2} right)} over {left( {n + 1/2} right)}}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}sumlimits_{0, le ,n}
{{{left( {1/2} right)^{,overline {,n,} } left( { - m + 3/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }} ,
{}_2F_{,1} left( {left. {matrix{ {1/2,3/2 - m} cr {3/2} cr } ,} right|;1} right) = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}{{Gamma left( {3/2} right)Gamma left( {m - 1/2} right)}
over {Gamma left( 1 right)Gamma left( m right)}} = cr
& = - {1 over {;2^{,m} Gamma left( m right)cos left( {pi m} right)}};pi quad left| {;1/2 < {mathop{rm Re}nolimits} (m)} right. cr}
}$$

valid also for complex $m$.



For integer $m=1,2, cdots, 7$ that gives
$$S(m)/pi={1 over 2}, ; { -1 over 4}, ; { 1 over 16}, ; { -1 over 96}, ; { 1 over 768}, ; { -1 over 7680}, ; { 1 over 92160},, cdots$$






share|cite|improve this answer























  • Wow. Thank you!
    – Joey Marlowe
    yesterday






  • 1




    @JoeyMarlowe: glad to have helped and solve the ..mistery
    – G Cab
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005376%2fhelp-understanding-the-cause-of-this-pattern-when-writing-%25cf%2580-as-an-infinite-serie%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










Considering the definition of the Rising Factorial
$$
z^{,overline {,n,} } = {{Gamma left( {z + n} right)} over {Gamma left( z right)}}
$$

the double factorial can then be written as
$$
left( {2n - 3} right)!! = left( {2left( {n - 2} right) + 1} right)!! = 2^{,n - 1} left( {{1 over 2}} right)^{,overline {,n - 1,} }
= {{1^{,overline {,2left( {n - 1} right),} } } over {2^{,n - 1} 1^{,overline {,n - 1,} } }}
$$



We apply :

- the Gamma Duplication formula
$$
Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right)quad
$$

- the Gamma Reflection formula
$$
Gamma left( z right),Gamma left( { - z} right) = - {pi over {zsin left( {pi ,z} right)}}
$$

- and the Gauss theorem for the Hypergeometric function
$$
{}_2F_{,1} left( {left. {matrix{ {a,b} cr c cr } ,} right|;1} right)
= {{Gamma left( c right)Gamma left( {c - a - b} right)} over {Gamma left( {c - a} right)Gamma left( {c - b} right)}}
quad left| {;{mathop{rm Re}nolimits} (a + b) < {mathop{rm Re}nolimits} (c)} right.
$$



Then the sum becomes
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( {left( {2n - 3} right)!!} right)^{,2} } over {left( {2n - 3} right)left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } 1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} }
left( {2n - 1} right)1^{,overline {,2n + 1,} } }}} = cr
& = sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} } left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{Gamma left( {2n + 1} right)} over {2^{,2n} Gamma left( {n + 1} right)Gamma left( {n + 1} right)
left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{2n{{2^{,2,n - 1} } over {sqrt pi }}Gamma left( n right)Gamma left( {n + 1/2} right)} over {2^{,2n}
Gamma left( {n + 1} right)Gamma left( {n + 1} right)left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = {1 over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)} over {Gamma left( {n + 1} right)left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - 1/2} right)} over {Gamma left( {n + 1} right)
left( {n + 1/2} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)Gamma left( {n - 1/2} right)}
over {Gamma left( {n + 3/2} right)}}{1 over {n!}}} = cr
& = {1 over {4sqrt pi }}{{Gamma left( {1/2} right)Gamma left( { - 1/2} right)} over {Gamma left( {3/2} right)}}
sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} } left( { - 1/2} right)^{,overline {,n,} } }
over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {{2pi } over {4sqrt pi }}{2 over {sqrt pi }}sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} }
left( { - 1/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {}_2F_{,1} left( {left. {matrix{ {1/2, - 1/2} cr {3/2} cr } ,} right|;1} right)
= - {{Gamma left( {3/2} right)Gamma left( {3/2} right)} over {Gamma left( 1 right)Gamma left( 2 right)}} = cr
& = - {pi over 4} cr}
$$



The other sums follow a similar pattern.



In fact, following the same steps as above (here reported concisely) we reach to the general expression
$$ bbox[lightyellow] {
eqalign{
& S(m) = sumlimits_{1, le ,n} {{{left( {2n - 2m - 1} right)!!} over {left( {2n - 1} right)left( {2n - 2} right)!!}}}
= sumlimits_{0, le ,n} {{{left( {2n - 2m + 1} right)!!} over {left( {2n + 1} right)left( {2n} right)!!}}} = cr
& = {{2^{, - m} } over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - m + 3/2} right)} over {left( {n + 1/2} right)}}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}sumlimits_{0, le ,n}
{{{left( {1/2} right)^{,overline {,n,} } left( { - m + 3/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }} ,
{}_2F_{,1} left( {left. {matrix{ {1/2,3/2 - m} cr {3/2} cr } ,} right|;1} right) = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}{{Gamma left( {3/2} right)Gamma left( {m - 1/2} right)}
over {Gamma left( 1 right)Gamma left( m right)}} = cr
& = - {1 over {;2^{,m} Gamma left( m right)cos left( {pi m} right)}};pi quad left| {;1/2 < {mathop{rm Re}nolimits} (m)} right. cr}
}$$

valid also for complex $m$.



For integer $m=1,2, cdots, 7$ that gives
$$S(m)/pi={1 over 2}, ; { -1 over 4}, ; { 1 over 16}, ; { -1 over 96}, ; { 1 over 768}, ; { -1 over 7680}, ; { 1 over 92160},, cdots$$






share|cite|improve this answer























  • Wow. Thank you!
    – Joey Marlowe
    yesterday






  • 1




    @JoeyMarlowe: glad to have helped and solve the ..mistery
    – G Cab
    yesterday















up vote
2
down vote



accepted










Considering the definition of the Rising Factorial
$$
z^{,overline {,n,} } = {{Gamma left( {z + n} right)} over {Gamma left( z right)}}
$$

the double factorial can then be written as
$$
left( {2n - 3} right)!! = left( {2left( {n - 2} right) + 1} right)!! = 2^{,n - 1} left( {{1 over 2}} right)^{,overline {,n - 1,} }
= {{1^{,overline {,2left( {n - 1} right),} } } over {2^{,n - 1} 1^{,overline {,n - 1,} } }}
$$



We apply :

- the Gamma Duplication formula
$$
Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right)quad
$$

- the Gamma Reflection formula
$$
Gamma left( z right),Gamma left( { - z} right) = - {pi over {zsin left( {pi ,z} right)}}
$$

- and the Gauss theorem for the Hypergeometric function
$$
{}_2F_{,1} left( {left. {matrix{ {a,b} cr c cr } ,} right|;1} right)
= {{Gamma left( c right)Gamma left( {c - a - b} right)} over {Gamma left( {c - a} right)Gamma left( {c - b} right)}}
quad left| {;{mathop{rm Re}nolimits} (a + b) < {mathop{rm Re}nolimits} (c)} right.
$$



Then the sum becomes
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( {left( {2n - 3} right)!!} right)^{,2} } over {left( {2n - 3} right)left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } 1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} }
left( {2n - 1} right)1^{,overline {,2n + 1,} } }}} = cr
& = sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} } left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{Gamma left( {2n + 1} right)} over {2^{,2n} Gamma left( {n + 1} right)Gamma left( {n + 1} right)
left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{2n{{2^{,2,n - 1} } over {sqrt pi }}Gamma left( n right)Gamma left( {n + 1/2} right)} over {2^{,2n}
Gamma left( {n + 1} right)Gamma left( {n + 1} right)left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = {1 over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)} over {Gamma left( {n + 1} right)left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - 1/2} right)} over {Gamma left( {n + 1} right)
left( {n + 1/2} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)Gamma left( {n - 1/2} right)}
over {Gamma left( {n + 3/2} right)}}{1 over {n!}}} = cr
& = {1 over {4sqrt pi }}{{Gamma left( {1/2} right)Gamma left( { - 1/2} right)} over {Gamma left( {3/2} right)}}
sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} } left( { - 1/2} right)^{,overline {,n,} } }
over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {{2pi } over {4sqrt pi }}{2 over {sqrt pi }}sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} }
left( { - 1/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {}_2F_{,1} left( {left. {matrix{ {1/2, - 1/2} cr {3/2} cr } ,} right|;1} right)
= - {{Gamma left( {3/2} right)Gamma left( {3/2} right)} over {Gamma left( 1 right)Gamma left( 2 right)}} = cr
& = - {pi over 4} cr}
$$



The other sums follow a similar pattern.



In fact, following the same steps as above (here reported concisely) we reach to the general expression
$$ bbox[lightyellow] {
eqalign{
& S(m) = sumlimits_{1, le ,n} {{{left( {2n - 2m - 1} right)!!} over {left( {2n - 1} right)left( {2n - 2} right)!!}}}
= sumlimits_{0, le ,n} {{{left( {2n - 2m + 1} right)!!} over {left( {2n + 1} right)left( {2n} right)!!}}} = cr
& = {{2^{, - m} } over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - m + 3/2} right)} over {left( {n + 1/2} right)}}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}sumlimits_{0, le ,n}
{{{left( {1/2} right)^{,overline {,n,} } left( { - m + 3/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }} ,
{}_2F_{,1} left( {left. {matrix{ {1/2,3/2 - m} cr {3/2} cr } ,} right|;1} right) = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}{{Gamma left( {3/2} right)Gamma left( {m - 1/2} right)}
over {Gamma left( 1 right)Gamma left( m right)}} = cr
& = - {1 over {;2^{,m} Gamma left( m right)cos left( {pi m} right)}};pi quad left| {;1/2 < {mathop{rm Re}nolimits} (m)} right. cr}
}$$

valid also for complex $m$.



For integer $m=1,2, cdots, 7$ that gives
$$S(m)/pi={1 over 2}, ; { -1 over 4}, ; { 1 over 16}, ; { -1 over 96}, ; { 1 over 768}, ; { -1 over 7680}, ; { 1 over 92160},, cdots$$






share|cite|improve this answer























  • Wow. Thank you!
    – Joey Marlowe
    yesterday






  • 1




    @JoeyMarlowe: glad to have helped and solve the ..mistery
    – G Cab
    yesterday













up vote
2
down vote



accepted







up vote
2
down vote



accepted






Considering the definition of the Rising Factorial
$$
z^{,overline {,n,} } = {{Gamma left( {z + n} right)} over {Gamma left( z right)}}
$$

the double factorial can then be written as
$$
left( {2n - 3} right)!! = left( {2left( {n - 2} right) + 1} right)!! = 2^{,n - 1} left( {{1 over 2}} right)^{,overline {,n - 1,} }
= {{1^{,overline {,2left( {n - 1} right),} } } over {2^{,n - 1} 1^{,overline {,n - 1,} } }}
$$



We apply :

- the Gamma Duplication formula
$$
Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right)quad
$$

- the Gamma Reflection formula
$$
Gamma left( z right),Gamma left( { - z} right) = - {pi over {zsin left( {pi ,z} right)}}
$$

- and the Gauss theorem for the Hypergeometric function
$$
{}_2F_{,1} left( {left. {matrix{ {a,b} cr c cr } ,} right|;1} right)
= {{Gamma left( c right)Gamma left( {c - a - b} right)} over {Gamma left( {c - a} right)Gamma left( {c - b} right)}}
quad left| {;{mathop{rm Re}nolimits} (a + b) < {mathop{rm Re}nolimits} (c)} right.
$$



Then the sum becomes
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( {left( {2n - 3} right)!!} right)^{,2} } over {left( {2n - 3} right)left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } 1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} }
left( {2n - 1} right)1^{,overline {,2n + 1,} } }}} = cr
& = sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} } left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{Gamma left( {2n + 1} right)} over {2^{,2n} Gamma left( {n + 1} right)Gamma left( {n + 1} right)
left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{2n{{2^{,2,n - 1} } over {sqrt pi }}Gamma left( n right)Gamma left( {n + 1/2} right)} over {2^{,2n}
Gamma left( {n + 1} right)Gamma left( {n + 1} right)left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = {1 over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)} over {Gamma left( {n + 1} right)left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - 1/2} right)} over {Gamma left( {n + 1} right)
left( {n + 1/2} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)Gamma left( {n - 1/2} right)}
over {Gamma left( {n + 3/2} right)}}{1 over {n!}}} = cr
& = {1 over {4sqrt pi }}{{Gamma left( {1/2} right)Gamma left( { - 1/2} right)} over {Gamma left( {3/2} right)}}
sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} } left( { - 1/2} right)^{,overline {,n,} } }
over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {{2pi } over {4sqrt pi }}{2 over {sqrt pi }}sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} }
left( { - 1/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {}_2F_{,1} left( {left. {matrix{ {1/2, - 1/2} cr {3/2} cr } ,} right|;1} right)
= - {{Gamma left( {3/2} right)Gamma left( {3/2} right)} over {Gamma left( 1 right)Gamma left( 2 right)}} = cr
& = - {pi over 4} cr}
$$



The other sums follow a similar pattern.



In fact, following the same steps as above (here reported concisely) we reach to the general expression
$$ bbox[lightyellow] {
eqalign{
& S(m) = sumlimits_{1, le ,n} {{{left( {2n - 2m - 1} right)!!} over {left( {2n - 1} right)left( {2n - 2} right)!!}}}
= sumlimits_{0, le ,n} {{{left( {2n - 2m + 1} right)!!} over {left( {2n + 1} right)left( {2n} right)!!}}} = cr
& = {{2^{, - m} } over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - m + 3/2} right)} over {left( {n + 1/2} right)}}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}sumlimits_{0, le ,n}
{{{left( {1/2} right)^{,overline {,n,} } left( { - m + 3/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }} ,
{}_2F_{,1} left( {left. {matrix{ {1/2,3/2 - m} cr {3/2} cr } ,} right|;1} right) = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}{{Gamma left( {3/2} right)Gamma left( {m - 1/2} right)}
over {Gamma left( 1 right)Gamma left( m right)}} = cr
& = - {1 over {;2^{,m} Gamma left( m right)cos left( {pi m} right)}};pi quad left| {;1/2 < {mathop{rm Re}nolimits} (m)} right. cr}
}$$

valid also for complex $m$.



For integer $m=1,2, cdots, 7$ that gives
$$S(m)/pi={1 over 2}, ; { -1 over 4}, ; { 1 over 16}, ; { -1 over 96}, ; { 1 over 768}, ; { -1 over 7680}, ; { 1 over 92160},, cdots$$






share|cite|improve this answer














Considering the definition of the Rising Factorial
$$
z^{,overline {,n,} } = {{Gamma left( {z + n} right)} over {Gamma left( z right)}}
$$

the double factorial can then be written as
$$
left( {2n - 3} right)!! = left( {2left( {n - 2} right) + 1} right)!! = 2^{,n - 1} left( {{1 over 2}} right)^{,overline {,n - 1,} }
= {{1^{,overline {,2left( {n - 1} right),} } } over {2^{,n - 1} 1^{,overline {,n - 1,} } }}
$$



We apply :

- the Gamma Duplication formula
$$
Gamma left( {2,z} right) = {{2^{,2,z - 1} } over {sqrt pi }}Gamma left( z right)Gamma left( {z + 1/2} right)quad
$$

- the Gamma Reflection formula
$$
Gamma left( z right),Gamma left( { - z} right) = - {pi over {zsin left( {pi ,z} right)}}
$$

- and the Gauss theorem for the Hypergeometric function
$$
{}_2F_{,1} left( {left. {matrix{ {a,b} cr c cr } ,} right|;1} right)
= {{Gamma left( c right)Gamma left( {c - a - b} right)} over {Gamma left( {c - a} right)Gamma left( {c - b} right)}}
quad left| {;{mathop{rm Re}nolimits} (a + b) < {mathop{rm Re}nolimits} (c)} right.
$$



Then the sum becomes
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( {left( {2n - 3} right)!!} right)^{,2} } over {left( {2n - 3} right)left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } 1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} }
left( {2n - 1} right)1^{,overline {,2n + 1,} } }}} = cr
& = sumlimits_{0, le ,n} {{{1^{,overline {,2n,} } } over {2^{,2n} ,1^{,overline {,n,} } ,1^{,overline {,n,} } left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{Gamma left( {2n + 1} right)} over {2^{,2n} Gamma left( {n + 1} right)Gamma left( {n + 1} right)
left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = sumlimits_{0, le ,n} {{{2n{{2^{,2,n - 1} } over {sqrt pi }}Gamma left( n right)Gamma left( {n + 1/2} right)} over {2^{,2n}
Gamma left( {n + 1} right)Gamma left( {n + 1} right)left( {2n - 1} right)left( {2n + 1} right)}}} = cr
& = {1 over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)} over {Gamma left( {n + 1} right)left( {2n - 1} right)
left( {2n + 1} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - 1/2} right)} over {Gamma left( {n + 1} right)
left( {n + 1/2} right)}}} = cr
& = {1 over {4sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n + 1/2} right)Gamma left( {n - 1/2} right)}
over {Gamma left( {n + 3/2} right)}}{1 over {n!}}} = cr
& = {1 over {4sqrt pi }}{{Gamma left( {1/2} right)Gamma left( { - 1/2} right)} over {Gamma left( {3/2} right)}}
sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} } left( { - 1/2} right)^{,overline {,n,} } }
over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {{2pi } over {4sqrt pi }}{2 over {sqrt pi }}sumlimits_{0, le ,n} {{{left( {1/2} right)^{,overline {,n,} }
left( { - 1/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = - {}_2F_{,1} left( {left. {matrix{ {1/2, - 1/2} cr {3/2} cr } ,} right|;1} right)
= - {{Gamma left( {3/2} right)Gamma left( {3/2} right)} over {Gamma left( 1 right)Gamma left( 2 right)}} = cr
& = - {pi over 4} cr}
$$



The other sums follow a similar pattern.



In fact, following the same steps as above (here reported concisely) we reach to the general expression
$$ bbox[lightyellow] {
eqalign{
& S(m) = sumlimits_{1, le ,n} {{{left( {2n - 2m - 1} right)!!} over {left( {2n - 1} right)left( {2n - 2} right)!!}}}
= sumlimits_{0, le ,n} {{{left( {2n - 2m + 1} right)!!} over {left( {2n + 1} right)left( {2n} right)!!}}} = cr
& = {{2^{, - m} } over {sqrt pi }}sumlimits_{0, le ,n} {{{Gamma left( {n - m + 3/2} right)} over {left( {n + 1/2} right)}}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}sumlimits_{0, le ,n}
{{{left( {1/2} right)^{,overline {,n,} } left( { - m + 3/2} right)^{,overline {,n,} } } over {left( {3/2} right)^{,overline {,n,} } }}{1 over {n!}}} = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }} ,
{}_2F_{,1} left( {left. {matrix{ {1/2,3/2 - m} cr {3/2} cr } ,} right|;1} right) = cr
& = {{2^{, - m + 1} Gamma left( { - m + 3/2} right)} over {sqrt pi }}{{Gamma left( {3/2} right)Gamma left( {m - 1/2} right)}
over {Gamma left( 1 right)Gamma left( m right)}} = cr
& = - {1 over {;2^{,m} Gamma left( m right)cos left( {pi m} right)}};pi quad left| {;1/2 < {mathop{rm Re}nolimits} (m)} right. cr}
}$$

valid also for complex $m$.



For integer $m=1,2, cdots, 7$ that gives
$$S(m)/pi={1 over 2}, ; { -1 over 4}, ; { 1 over 16}, ; { -1 over 96}, ; { 1 over 768}, ; { -1 over 7680}, ; { 1 over 92160},, cdots$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









G Cab

16.9k31237




16.9k31237












  • Wow. Thank you!
    – Joey Marlowe
    yesterday






  • 1




    @JoeyMarlowe: glad to have helped and solve the ..mistery
    – G Cab
    yesterday


















  • Wow. Thank you!
    – Joey Marlowe
    yesterday






  • 1




    @JoeyMarlowe: glad to have helped and solve the ..mistery
    – G Cab
    yesterday
















Wow. Thank you!
– Joey Marlowe
yesterday




Wow. Thank you!
– Joey Marlowe
yesterday




1




1




@JoeyMarlowe: glad to have helped and solve the ..mistery
– G Cab
yesterday




@JoeyMarlowe: glad to have helped and solve the ..mistery
– G Cab
yesterday


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005376%2fhelp-understanding-the-cause-of-this-pattern-when-writing-%25cf%2580-as-an-infinite-serie%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith