$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]-left[1^{1^p}2^{2^p}cdots n^{n^p}right]$ converge?
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
add a comment |
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 '18 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 '18 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 '18 at 14:13
add a comment |
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
real-analysis sequences-and-series limits contest-math
asked Nov 21 '18 at 12:05
Rafael Deiga
662311
662311
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 '18 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 '18 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 '18 at 14:13
add a comment |
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 '18 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 '18 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 '18 at 14:13
1
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 '18 at 12:41
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 '18 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 '18 at 13:34
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 '18 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 '18 at 14:13
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 '18 at 14:13
add a comment |
1 Answer
1
active
oldest
votes
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 '18 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 '18 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 '18 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 '18 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 '18 at 15:49
|
show 5 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007638%2fx-n-left11p22p-cdots-n1n1p-right-left11p22p-cd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 '18 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 '18 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 '18 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 '18 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 '18 at 15:49
|
show 5 more comments
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 '18 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 '18 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 '18 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 '18 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 '18 at 15:49
|
show 5 more comments
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
edited Nov 21 '18 at 15:56
answered Nov 21 '18 at 14:33


gimusi
1
1
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 '18 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 '18 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 '18 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 '18 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 '18 at 15:49
|
show 5 more comments
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 '18 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 '18 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 '18 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 '18 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 '18 at 15:49
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 '18 at 15:33
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 '18 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 '18 at 15:35
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 '18 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 '18 at 15:46
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 '18 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 '18 at 15:48
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 '18 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 '18 at 15:49
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 '18 at 15:49
|
show 5 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007638%2fx-n-left11p22p-cdots-n1n1p-right-left11p22p-cd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 '18 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 '18 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 '18 at 14:13