A hint for the entropy problem-entropy of one discrete variable is greater than the entropy of another one












0












$begingroup$


I need a hint on how to start solving the following problem.



Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.



a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).



b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I need a hint on how to start solving the following problem.



    Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.



    a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).



    b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I need a hint on how to start solving the following problem.



      Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.



      a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).



      b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}










      share|cite|improve this question









      $endgroup$




      I need a hint on how to start solving the following problem.



      Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.



      a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).



      b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}







      probability entropy






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 9 at 22:08









      Novak DjokovicNovak Djokovic

      44328




      44328






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          $$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
          &= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$

          It then suffices to show
          $-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
          for each $y$,
          since then the above would be bounded by
          $$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
          = - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$



          The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068004%2fa-hint-for-the-entropy-problem-entropy-of-one-discrete-variable-is-greater-than%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            $$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
            &= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$

            It then suffices to show
            $-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
            for each $y$,
            since then the above would be bounded by
            $$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
            = - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$



            The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              $$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
              &= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$

              It then suffices to show
              $-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
              for each $y$,
              since then the above would be bounded by
              $$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
              = - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$



              The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                $$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
                &= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$

                It then suffices to show
                $-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
                for each $y$,
                since then the above would be bounded by
                $$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
                = - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$



                The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.






                share|cite|improve this answer











                $endgroup$



                $$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
                &= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$

                It then suffices to show
                $-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
                for each $y$,
                since then the above would be bounded by
                $$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
                = - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$



                The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 9 at 22:44

























                answered Jan 9 at 22:37









                angryavianangryavian

                40.7k23380




                40.7k23380






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068004%2fa-hint-for-the-entropy-problem-entropy-of-one-discrete-variable-is-greater-than%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    Npm cannot find a required file even through it is in the searched directory