A hint for the entropy problem-entropy of one discrete variable is greater than the entropy of another one
$begingroup$
I need a hint on how to start solving the following problem.
Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.
a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).
b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}
probability entropy
$endgroup$
add a comment |
$begingroup$
I need a hint on how to start solving the following problem.
Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.
a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).
b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}
probability entropy
$endgroup$
add a comment |
$begingroup$
I need a hint on how to start solving the following problem.
Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.
a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).
b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}
probability entropy
$endgroup$
I need a hint on how to start solving the following problem.
Entropy of a discrete variable X is $H(X) = −sum_{xin {x:P(X=x)>0}}P(X=x)logP(X=x)$. Let $f:R → R$ be any function.
a) Show that entropy of a discrete variable X is greater than or equal to entropy of a discrete variable f(X).
b) Show that equality occurs if and only if function f is injective on {x : P(X = x) > 0}
probability entropy
probability entropy
asked Jan 9 at 22:08
Novak DjokovicNovak Djokovic
44328
44328
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
&= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$
It then suffices to show
$-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
for each $y$,
since then the above would be bounded by
$$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
= - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$
The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068004%2fa-hint-for-the-entropy-problem-entropy-of-one-discrete-variable-is-greater-than%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
&= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$
It then suffices to show
$-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
for each $y$,
since then the above would be bounded by
$$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
= - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$
The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.
$endgroup$
add a comment |
$begingroup$
$$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
&= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$
It then suffices to show
$-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
for each $y$,
since then the above would be bounded by
$$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
= - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$
The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.
$endgroup$
add a comment |
$begingroup$
$$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
&= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$
It then suffices to show
$-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
for each $y$,
since then the above would be bounded by
$$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
= - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$
The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.
$endgroup$
$$begin{align}&-sum_{y : P(f(X) = y) > 0} P(Y=y) log P(Y = y)\
&= -sum_{y : P(f(X) = y) > 0} left{left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right)right}.end{align}$$
It then suffices to show
$-left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X = x)right) log left(sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x)right) le - sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)$
for each $y$,
since then the above would be bounded by
$$le - sum_{y : P(f(X)=y)>0}sum_{x in f^{-1}(y) : P(X=x) > 0} P(X=x) log P(X=x)
= - sum_{x : P(X=x)>0} P(X=x) log P(X=x).$$
The unverified claim reduces to showing that the function $g(x) = - x log x$ is sub-additive, i.e. $g(a+b) le g(a) + g(b)$.
edited Jan 9 at 22:44
answered Jan 9 at 22:37
angryavianangryavian
40.7k23380
40.7k23380
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068004%2fa-hint-for-the-entropy-problem-entropy-of-one-discrete-variable-is-greater-than%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown