Binary Polymatroid Optimization Problem












0












$begingroup$


Let $mathcal{N}$ denote the finite set ${1, 2, ldots, n}$, and let $mathcal{S}_j$ denote the set ${1, 2, ldots, j}$; let $fcolon mathcal{N} to mathbb{N}$ be nondecreasing, submodular and with $f(emptyset) = 0$, and let $c_1, c_2, ldots, c_n$ be an nonnegative integer-valued cost vector satisfying $c_i geq c_j$ when $i leq j$. We seek an assignment vector $x^* in {0, 1}^n$ maximizing



begin{equation}
sum_{i = 1}^n c_ix_i text{ under the constraint } sum_{i in mathcal{S}} x_i leq f(mathcal{S}) text{ for all } mathcal{S} subseteq mathcal{N}.
end{equation}



Note that if $x_i geq 0, forall i in mathcal{N}$ (as opposed to binary), then the optimal assignment is given by $x_i = f(mathcal{S}_i) - f(mathcal{S}_{i - 1})$ (cf. Optimization over Integers by Bertsimas & Weismantel). My guess is that



begin{equation}
x^* = begin{cases}
1 & text{ if }: f(mathcal{S}_i) - f(mathcal{S}_{i - 1}) > 0\
0 & text{ else.}
end{cases}
end{equation}



To establish the optimality of my proposed solution, I would like to construct a dual-feasible solution of the same cost/value, i.e., to find a nonnegative (componentwise) vector $y_mathcal{S}, mathcal{S} subseteq mathcal{N},$ and a nonnegative vector $tilde{y}_i, i in mathcal{N},$ such that



begin{equation}
sum_{mathcal{S}: i in mathcal{S}} y_mathcal{S} + tilde{y}_i geq c_i, forall i in mathcal{N} text{ (dual feasibility)},
end{equation}



and such that



begin{equation}
sum_{mathcal{S} subseteq mathcal{N}} y_mathcal{S}f(mathcal{S}) + sum_{i = 1}^n tilde{y}_i = sum_{i = 1}^n c_ix^*_i text { (optimality via weak duality)}.
end{equation}



Note again that without restricting $x$ to be binary, a suitable dual vector is $y_mathcal{S} = c_i - c_{i + 1}$ if $mathcal{S} = mathcal{S}_i$, and $y_mathcal{S} = 0$ else ($tilde{y}_i = 0, forall i in mathcal{N}$). I appreciate any help towards finding a suitable dual vector to my proposed solution $x^*$ (or any other argument as to why $x^*$ is the optimal assignment).










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $mathcal{N}$ denote the finite set ${1, 2, ldots, n}$, and let $mathcal{S}_j$ denote the set ${1, 2, ldots, j}$; let $fcolon mathcal{N} to mathbb{N}$ be nondecreasing, submodular and with $f(emptyset) = 0$, and let $c_1, c_2, ldots, c_n$ be an nonnegative integer-valued cost vector satisfying $c_i geq c_j$ when $i leq j$. We seek an assignment vector $x^* in {0, 1}^n$ maximizing



    begin{equation}
    sum_{i = 1}^n c_ix_i text{ under the constraint } sum_{i in mathcal{S}} x_i leq f(mathcal{S}) text{ for all } mathcal{S} subseteq mathcal{N}.
    end{equation}



    Note that if $x_i geq 0, forall i in mathcal{N}$ (as opposed to binary), then the optimal assignment is given by $x_i = f(mathcal{S}_i) - f(mathcal{S}_{i - 1})$ (cf. Optimization over Integers by Bertsimas & Weismantel). My guess is that



    begin{equation}
    x^* = begin{cases}
    1 & text{ if }: f(mathcal{S}_i) - f(mathcal{S}_{i - 1}) > 0\
    0 & text{ else.}
    end{cases}
    end{equation}



    To establish the optimality of my proposed solution, I would like to construct a dual-feasible solution of the same cost/value, i.e., to find a nonnegative (componentwise) vector $y_mathcal{S}, mathcal{S} subseteq mathcal{N},$ and a nonnegative vector $tilde{y}_i, i in mathcal{N},$ such that



    begin{equation}
    sum_{mathcal{S}: i in mathcal{S}} y_mathcal{S} + tilde{y}_i geq c_i, forall i in mathcal{N} text{ (dual feasibility)},
    end{equation}



    and such that



    begin{equation}
    sum_{mathcal{S} subseteq mathcal{N}} y_mathcal{S}f(mathcal{S}) + sum_{i = 1}^n tilde{y}_i = sum_{i = 1}^n c_ix^*_i text { (optimality via weak duality)}.
    end{equation}



    Note again that without restricting $x$ to be binary, a suitable dual vector is $y_mathcal{S} = c_i - c_{i + 1}$ if $mathcal{S} = mathcal{S}_i$, and $y_mathcal{S} = 0$ else ($tilde{y}_i = 0, forall i in mathcal{N}$). I appreciate any help towards finding a suitable dual vector to my proposed solution $x^*$ (or any other argument as to why $x^*$ is the optimal assignment).










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $mathcal{N}$ denote the finite set ${1, 2, ldots, n}$, and let $mathcal{S}_j$ denote the set ${1, 2, ldots, j}$; let $fcolon mathcal{N} to mathbb{N}$ be nondecreasing, submodular and with $f(emptyset) = 0$, and let $c_1, c_2, ldots, c_n$ be an nonnegative integer-valued cost vector satisfying $c_i geq c_j$ when $i leq j$. We seek an assignment vector $x^* in {0, 1}^n$ maximizing



      begin{equation}
      sum_{i = 1}^n c_ix_i text{ under the constraint } sum_{i in mathcal{S}} x_i leq f(mathcal{S}) text{ for all } mathcal{S} subseteq mathcal{N}.
      end{equation}



      Note that if $x_i geq 0, forall i in mathcal{N}$ (as opposed to binary), then the optimal assignment is given by $x_i = f(mathcal{S}_i) - f(mathcal{S}_{i - 1})$ (cf. Optimization over Integers by Bertsimas & Weismantel). My guess is that



      begin{equation}
      x^* = begin{cases}
      1 & text{ if }: f(mathcal{S}_i) - f(mathcal{S}_{i - 1}) > 0\
      0 & text{ else.}
      end{cases}
      end{equation}



      To establish the optimality of my proposed solution, I would like to construct a dual-feasible solution of the same cost/value, i.e., to find a nonnegative (componentwise) vector $y_mathcal{S}, mathcal{S} subseteq mathcal{N},$ and a nonnegative vector $tilde{y}_i, i in mathcal{N},$ such that



      begin{equation}
      sum_{mathcal{S}: i in mathcal{S}} y_mathcal{S} + tilde{y}_i geq c_i, forall i in mathcal{N} text{ (dual feasibility)},
      end{equation}



      and such that



      begin{equation}
      sum_{mathcal{S} subseteq mathcal{N}} y_mathcal{S}f(mathcal{S}) + sum_{i = 1}^n tilde{y}_i = sum_{i = 1}^n c_ix^*_i text { (optimality via weak duality)}.
      end{equation}



      Note again that without restricting $x$ to be binary, a suitable dual vector is $y_mathcal{S} = c_i - c_{i + 1}$ if $mathcal{S} = mathcal{S}_i$, and $y_mathcal{S} = 0$ else ($tilde{y}_i = 0, forall i in mathcal{N}$). I appreciate any help towards finding a suitable dual vector to my proposed solution $x^*$ (or any other argument as to why $x^*$ is the optimal assignment).










      share|cite|improve this question









      $endgroup$




      Let $mathcal{N}$ denote the finite set ${1, 2, ldots, n}$, and let $mathcal{S}_j$ denote the set ${1, 2, ldots, j}$; let $fcolon mathcal{N} to mathbb{N}$ be nondecreasing, submodular and with $f(emptyset) = 0$, and let $c_1, c_2, ldots, c_n$ be an nonnegative integer-valued cost vector satisfying $c_i geq c_j$ when $i leq j$. We seek an assignment vector $x^* in {0, 1}^n$ maximizing



      begin{equation}
      sum_{i = 1}^n c_ix_i text{ under the constraint } sum_{i in mathcal{S}} x_i leq f(mathcal{S}) text{ for all } mathcal{S} subseteq mathcal{N}.
      end{equation}



      Note that if $x_i geq 0, forall i in mathcal{N}$ (as opposed to binary), then the optimal assignment is given by $x_i = f(mathcal{S}_i) - f(mathcal{S}_{i - 1})$ (cf. Optimization over Integers by Bertsimas & Weismantel). My guess is that



      begin{equation}
      x^* = begin{cases}
      1 & text{ if }: f(mathcal{S}_i) - f(mathcal{S}_{i - 1}) > 0\
      0 & text{ else.}
      end{cases}
      end{equation}



      To establish the optimality of my proposed solution, I would like to construct a dual-feasible solution of the same cost/value, i.e., to find a nonnegative (componentwise) vector $y_mathcal{S}, mathcal{S} subseteq mathcal{N},$ and a nonnegative vector $tilde{y}_i, i in mathcal{N},$ such that



      begin{equation}
      sum_{mathcal{S}: i in mathcal{S}} y_mathcal{S} + tilde{y}_i geq c_i, forall i in mathcal{N} text{ (dual feasibility)},
      end{equation}



      and such that



      begin{equation}
      sum_{mathcal{S} subseteq mathcal{N}} y_mathcal{S}f(mathcal{S}) + sum_{i = 1}^n tilde{y}_i = sum_{i = 1}^n c_ix^*_i text { (optimality via weak duality)}.
      end{equation}



      Note again that without restricting $x$ to be binary, a suitable dual vector is $y_mathcal{S} = c_i - c_{i + 1}$ if $mathcal{S} = mathcal{S}_i$, and $y_mathcal{S} = 0$ else ($tilde{y}_i = 0, forall i in mathcal{N}$). I appreciate any help towards finding a suitable dual vector to my proposed solution $x^*$ (or any other argument as to why $x^*$ is the optimal assignment).







      linear-algebra duality-theorems discrete-optimization






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 17 at 23:45









      user480881user480881

      1118




      1118






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077677%2fbinary-polymatroid-optimization-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077677%2fbinary-polymatroid-optimization-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          How to fix TextFormField cause rebuild widget in Flutter