First order approximation of $zeta$(s) at s=1
$begingroup$
I was playing around with Wolfram Alpha.
I found one interesting thing when I asked it to evaluate this particular summation.$$Sigma_{n=1}^inftyfrac{1}{n^{1+10^{-
10}}}$$
It returned this$$ approx10^{10}+gamma$$
That's right the number itself plus the Euler–Mascheroni constant.
I tried it for various other values and it turned out to follow the same pattern. As the value got smaller the closer it followed that pattern.
Image of Wolfram Alpha result click here
So formally stating $$ lim _{s rightarrow0 } zeta(1+s) = 1/s+ gamma$$
Is this true?
And why is this true?
Could it be proven by taking the first order approximation of the zeta function.
sequences-and-series approximation riemann-zeta
$endgroup$
add a comment |
$begingroup$
I was playing around with Wolfram Alpha.
I found one interesting thing when I asked it to evaluate this particular summation.$$Sigma_{n=1}^inftyfrac{1}{n^{1+10^{-
10}}}$$
It returned this$$ approx10^{10}+gamma$$
That's right the number itself plus the Euler–Mascheroni constant.
I tried it for various other values and it turned out to follow the same pattern. As the value got smaller the closer it followed that pattern.
Image of Wolfram Alpha result click here
So formally stating $$ lim _{s rightarrow0 } zeta(1+s) = 1/s+ gamma$$
Is this true?
And why is this true?
Could it be proven by taking the first order approximation of the zeta function.
sequences-and-series approximation riemann-zeta
$endgroup$
$begingroup$
Better now after your edit ! I shall fix my answer. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 18 at 8:43
$begingroup$
arxiv.org/pdf/1201.2633.pdf could be of interest.
$endgroup$
– Claude Leibovici
Jan 18 at 8:53
add a comment |
$begingroup$
I was playing around with Wolfram Alpha.
I found one interesting thing when I asked it to evaluate this particular summation.$$Sigma_{n=1}^inftyfrac{1}{n^{1+10^{-
10}}}$$
It returned this$$ approx10^{10}+gamma$$
That's right the number itself plus the Euler–Mascheroni constant.
I tried it for various other values and it turned out to follow the same pattern. As the value got smaller the closer it followed that pattern.
Image of Wolfram Alpha result click here
So formally stating $$ lim _{s rightarrow0 } zeta(1+s) = 1/s+ gamma$$
Is this true?
And why is this true?
Could it be proven by taking the first order approximation of the zeta function.
sequences-and-series approximation riemann-zeta
$endgroup$
I was playing around with Wolfram Alpha.
I found one interesting thing when I asked it to evaluate this particular summation.$$Sigma_{n=1}^inftyfrac{1}{n^{1+10^{-
10}}}$$
It returned this$$ approx10^{10}+gamma$$
That's right the number itself plus the Euler–Mascheroni constant.
I tried it for various other values and it turned out to follow the same pattern. As the value got smaller the closer it followed that pattern.
Image of Wolfram Alpha result click here
So formally stating $$ lim _{s rightarrow0 } zeta(1+s) = 1/s+ gamma$$
Is this true?
And why is this true?
Could it be proven by taking the first order approximation of the zeta function.
sequences-and-series approximation riemann-zeta
sequences-and-series approximation riemann-zeta
edited Jan 18 at 8:42
Karthik
asked Jan 18 at 8:29
KarthikKarthik
13212
13212
$begingroup$
Better now after your edit ! I shall fix my answer. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 18 at 8:43
$begingroup$
arxiv.org/pdf/1201.2633.pdf could be of interest.
$endgroup$
– Claude Leibovici
Jan 18 at 8:53
add a comment |
$begingroup$
Better now after your edit ! I shall fix my answer. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 18 at 8:43
$begingroup$
arxiv.org/pdf/1201.2633.pdf could be of interest.
$endgroup$
– Claude Leibovici
Jan 18 at 8:53
$begingroup$
Better now after your edit ! I shall fix my answer. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 18 at 8:43
$begingroup$
Better now after your edit ! I shall fix my answer. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 18 at 8:43
$begingroup$
arxiv.org/pdf/1201.2633.pdf could be of interest.
$endgroup$
– Claude Leibovici
Jan 18 at 8:53
$begingroup$
arxiv.org/pdf/1201.2633.pdf could be of interest.
$endgroup$
– Claude Leibovici
Jan 18 at 8:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$sum_{n=1}^inftyfrac{1}{n^{1+epsilon}}=zeta (1+epsilon)=frac{1}{epsilon }+gamma -gamma _1 epsilon +frac{gamma _2 }{2}epsilon
^2+Oleft(epsilon ^3right)$$ where appear the generalized Stieltjes constants.
$endgroup$
$begingroup$
Refer to the comment by Claude for more details.
$endgroup$
– Karthik
Jan 18 at 9:08
1
$begingroup$
@JackD'Aurizio. Please, don't call me Sir. I shall work on this tomorrow morning. Cheers & thank for the problem.
$endgroup$
– Claude Leibovici
Jan 18 at 17:19
$begingroup$
$zeta(s) = sum_{n=1}^infty frac1n n^{1-s} = (s-1) int_1^infty ( sum_{n le x} frac1n) x^{-s}dx$ may help to show $lim_{s to 1} zeta(s) - frac1{s-1} $ $=lim_{s to 1} (s-1) int_1^infty ( sum_{n le x} frac1n- log(x)) x^{-s}dx=lim_{s to 1} (s-1) int_1^infty (gamma+o(1)) x^{-s}dx = lim_{s to 1} gamma+o(1) = gamma$
$endgroup$
– reuns
Jan 18 at 19:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077972%2ffirst-order-approximation-of-zetas-at-s-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$sum_{n=1}^inftyfrac{1}{n^{1+epsilon}}=zeta (1+epsilon)=frac{1}{epsilon }+gamma -gamma _1 epsilon +frac{gamma _2 }{2}epsilon
^2+Oleft(epsilon ^3right)$$ where appear the generalized Stieltjes constants.
$endgroup$
$begingroup$
Refer to the comment by Claude for more details.
$endgroup$
– Karthik
Jan 18 at 9:08
1
$begingroup$
@JackD'Aurizio. Please, don't call me Sir. I shall work on this tomorrow morning. Cheers & thank for the problem.
$endgroup$
– Claude Leibovici
Jan 18 at 17:19
$begingroup$
$zeta(s) = sum_{n=1}^infty frac1n n^{1-s} = (s-1) int_1^infty ( sum_{n le x} frac1n) x^{-s}dx$ may help to show $lim_{s to 1} zeta(s) - frac1{s-1} $ $=lim_{s to 1} (s-1) int_1^infty ( sum_{n le x} frac1n- log(x)) x^{-s}dx=lim_{s to 1} (s-1) int_1^infty (gamma+o(1)) x^{-s}dx = lim_{s to 1} gamma+o(1) = gamma$
$endgroup$
– reuns
Jan 18 at 19:14
add a comment |
$begingroup$
$$sum_{n=1}^inftyfrac{1}{n^{1+epsilon}}=zeta (1+epsilon)=frac{1}{epsilon }+gamma -gamma _1 epsilon +frac{gamma _2 }{2}epsilon
^2+Oleft(epsilon ^3right)$$ where appear the generalized Stieltjes constants.
$endgroup$
$begingroup$
Refer to the comment by Claude for more details.
$endgroup$
– Karthik
Jan 18 at 9:08
1
$begingroup$
@JackD'Aurizio. Please, don't call me Sir. I shall work on this tomorrow morning. Cheers & thank for the problem.
$endgroup$
– Claude Leibovici
Jan 18 at 17:19
$begingroup$
$zeta(s) = sum_{n=1}^infty frac1n n^{1-s} = (s-1) int_1^infty ( sum_{n le x} frac1n) x^{-s}dx$ may help to show $lim_{s to 1} zeta(s) - frac1{s-1} $ $=lim_{s to 1} (s-1) int_1^infty ( sum_{n le x} frac1n- log(x)) x^{-s}dx=lim_{s to 1} (s-1) int_1^infty (gamma+o(1)) x^{-s}dx = lim_{s to 1} gamma+o(1) = gamma$
$endgroup$
– reuns
Jan 18 at 19:14
add a comment |
$begingroup$
$$sum_{n=1}^inftyfrac{1}{n^{1+epsilon}}=zeta (1+epsilon)=frac{1}{epsilon }+gamma -gamma _1 epsilon +frac{gamma _2 }{2}epsilon
^2+Oleft(epsilon ^3right)$$ where appear the generalized Stieltjes constants.
$endgroup$
$$sum_{n=1}^inftyfrac{1}{n^{1+epsilon}}=zeta (1+epsilon)=frac{1}{epsilon }+gamma -gamma _1 epsilon +frac{gamma _2 }{2}epsilon
^2+Oleft(epsilon ^3right)$$ where appear the generalized Stieltjes constants.
edited Jan 18 at 8:44
answered Jan 18 at 8:39
Claude LeiboviciClaude Leibovici
123k1157134
123k1157134
$begingroup$
Refer to the comment by Claude for more details.
$endgroup$
– Karthik
Jan 18 at 9:08
1
$begingroup$
@JackD'Aurizio. Please, don't call me Sir. I shall work on this tomorrow morning. Cheers & thank for the problem.
$endgroup$
– Claude Leibovici
Jan 18 at 17:19
$begingroup$
$zeta(s) = sum_{n=1}^infty frac1n n^{1-s} = (s-1) int_1^infty ( sum_{n le x} frac1n) x^{-s}dx$ may help to show $lim_{s to 1} zeta(s) - frac1{s-1} $ $=lim_{s to 1} (s-1) int_1^infty ( sum_{n le x} frac1n- log(x)) x^{-s}dx=lim_{s to 1} (s-1) int_1^infty (gamma+o(1)) x^{-s}dx = lim_{s to 1} gamma+o(1) = gamma$
$endgroup$
– reuns
Jan 18 at 19:14
add a comment |
$begingroup$
Refer to the comment by Claude for more details.
$endgroup$
– Karthik
Jan 18 at 9:08
1
$begingroup$
@JackD'Aurizio. Please, don't call me Sir. I shall work on this tomorrow morning. Cheers & thank for the problem.
$endgroup$
– Claude Leibovici
Jan 18 at 17:19
$begingroup$
$zeta(s) = sum_{n=1}^infty frac1n n^{1-s} = (s-1) int_1^infty ( sum_{n le x} frac1n) x^{-s}dx$ may help to show $lim_{s to 1} zeta(s) - frac1{s-1} $ $=lim_{s to 1} (s-1) int_1^infty ( sum_{n le x} frac1n- log(x)) x^{-s}dx=lim_{s to 1} (s-1) int_1^infty (gamma+o(1)) x^{-s}dx = lim_{s to 1} gamma+o(1) = gamma$
$endgroup$
– reuns
Jan 18 at 19:14
$begingroup$
Refer to the comment by Claude for more details.
$endgroup$
– Karthik
Jan 18 at 9:08
$begingroup$
Refer to the comment by Claude for more details.
$endgroup$
– Karthik
Jan 18 at 9:08
1
1
$begingroup$
@JackD'Aurizio. Please, don't call me Sir. I shall work on this tomorrow morning. Cheers & thank for the problem.
$endgroup$
– Claude Leibovici
Jan 18 at 17:19
$begingroup$
@JackD'Aurizio. Please, don't call me Sir. I shall work on this tomorrow morning. Cheers & thank for the problem.
$endgroup$
– Claude Leibovici
Jan 18 at 17:19
$begingroup$
$zeta(s) = sum_{n=1}^infty frac1n n^{1-s} = (s-1) int_1^infty ( sum_{n le x} frac1n) x^{-s}dx$ may help to show $lim_{s to 1} zeta(s) - frac1{s-1} $ $=lim_{s to 1} (s-1) int_1^infty ( sum_{n le x} frac1n- log(x)) x^{-s}dx=lim_{s to 1} (s-1) int_1^infty (gamma+o(1)) x^{-s}dx = lim_{s to 1} gamma+o(1) = gamma$
$endgroup$
– reuns
Jan 18 at 19:14
$begingroup$
$zeta(s) = sum_{n=1}^infty frac1n n^{1-s} = (s-1) int_1^infty ( sum_{n le x} frac1n) x^{-s}dx$ may help to show $lim_{s to 1} zeta(s) - frac1{s-1} $ $=lim_{s to 1} (s-1) int_1^infty ( sum_{n le x} frac1n- log(x)) x^{-s}dx=lim_{s to 1} (s-1) int_1^infty (gamma+o(1)) x^{-s}dx = lim_{s to 1} gamma+o(1) = gamma$
$endgroup$
– reuns
Jan 18 at 19:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077972%2ffirst-order-approximation-of-zetas-at-s-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Better now after your edit ! I shall fix my answer. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 18 at 8:43
$begingroup$
arxiv.org/pdf/1201.2633.pdf could be of interest.
$endgroup$
– Claude Leibovici
Jan 18 at 8:53