Find all ordered pairs $(a, b)$ in $a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$












0












$begingroup$



Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and



$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$




$bf{My; Solution}::$ Using Complex number..



Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$



Now Add $bf{(1)}$ and $bf{(2);,}$ We get



$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$



So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$



Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$



Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$



So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$



My Question is , can we solve it without Using Complex number



If yes, The please explain here



Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
    $endgroup$
    – lab bhattacharjee
    Aug 24 '14 at 8:43
















0












$begingroup$



Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and



$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$




$bf{My; Solution}::$ Using Complex number..



Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$



Now Add $bf{(1)}$ and $bf{(2);,}$ We get



$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$



So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$



Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$



Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$



So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$



My Question is , can we solve it without Using Complex number



If yes, The please explain here



Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
    $endgroup$
    – lab bhattacharjee
    Aug 24 '14 at 8:43














0












0








0


2



$begingroup$



Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and



$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$




$bf{My; Solution}::$ Using Complex number..



Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$



Now Add $bf{(1)}$ and $bf{(2);,}$ We get



$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$



So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$



Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$



Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$



So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$



My Question is , can we solve it without Using Complex number



If yes, The please explain here



Thanks










share|cite|improve this question











$endgroup$





Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and



$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$




$bf{My; Solution}::$ Using Complex number..



Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$



Now Add $bf{(1)}$ and $bf{(2);,}$ We get



$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$



So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$



Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$



Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$



So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$



My Question is , can we solve it without Using Complex number



If yes, The please explain here



Thanks







algebra-precalculus systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 7:52









Michael Rozenberg

105k1892198




105k1892198










asked Aug 24 '14 at 8:27









juantheronjuantheron

34.3k1148143




34.3k1148143












  • $begingroup$
    We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
    $endgroup$
    – lab bhattacharjee
    Aug 24 '14 at 8:43


















  • $begingroup$
    We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
    $endgroup$
    – lab bhattacharjee
    Aug 24 '14 at 8:43
















$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43




$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43










1 Answer
1






active

oldest

votes


















1












$begingroup$

Easy to see that $abneq0$.



Thus, our system is equal to
$$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
$$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
$$(5-a)b+(4-b)a=10$$ or
$$(2a-5)(b-2)=0.$$
The rest is smooth.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f907496%2ffind-all-ordered-pairs-a-b-in-a-frac10ba2b2-5-b-frac10aa%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Easy to see that $abneq0$.



    Thus, our system is equal to
    $$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
    $$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
    $$(5-a)b+(4-b)a=10$$ or
    $$(2a-5)(b-2)=0.$$
    The rest is smooth.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Easy to see that $abneq0$.



      Thus, our system is equal to
      $$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
      $$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
      $$(5-a)b+(4-b)a=10$$ or
      $$(2a-5)(b-2)=0.$$
      The rest is smooth.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Easy to see that $abneq0$.



        Thus, our system is equal to
        $$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
        $$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
        $$(5-a)b+(4-b)a=10$$ or
        $$(2a-5)(b-2)=0.$$
        The rest is smooth.






        share|cite|improve this answer









        $endgroup$



        Easy to see that $abneq0$.



        Thus, our system is equal to
        $$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
        $$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
        $$(5-a)b+(4-b)a=10$$ or
        $$(2a-5)(b-2)=0.$$
        The rest is smooth.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 18 at 7:50









        Michael RozenbergMichael Rozenberg

        105k1892198




        105k1892198






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f907496%2ffind-all-ordered-pairs-a-b-in-a-frac10ba2b2-5-b-frac10aa%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]