Find all ordered pairs $(a, b)$ in $a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$
$begingroup$
Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and
$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$
$bf{My; Solution}::$ Using Complex number..
Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$
Now Add $bf{(1)}$ and $bf{(2);,}$ We get
$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$
So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$
Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$
Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$
So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$
My Question is , can we solve it without Using Complex number
If yes, The please explain here
Thanks
algebra-precalculus systems-of-equations
$endgroup$
add a comment |
$begingroup$
Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and
$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$
$bf{My; Solution}::$ Using Complex number..
Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$
Now Add $bf{(1)}$ and $bf{(2);,}$ We get
$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$
So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$
Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$
Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$
So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$
My Question is , can we solve it without Using Complex number
If yes, The please explain here
Thanks
algebra-precalculus systems-of-equations
$endgroup$
$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43
add a comment |
$begingroup$
Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and
$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$
$bf{My; Solution}::$ Using Complex number..
Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$
Now Add $bf{(1)}$ and $bf{(2);,}$ We get
$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$
So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$
Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$
Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$
So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$
My Question is , can we solve it without Using Complex number
If yes, The please explain here
Thanks
algebra-precalculus systems-of-equations
$endgroup$
Find all ordered pairs $(a, b)$ of complex numbers with $a^2+b^2neq 0,$ and
$displaystyle a+frac{10b}{a^2+b^2} = 5;;,b+frac{10a}{a^2+b^2}=4$
$bf{My; Solution}::$ Using Complex number..
Given $displaystyle a+frac{10b}{a^2+b^2}=5..............(1)$ and $displaystyle b+frac{10a}{a^2+b^2}=4...................(2)times i$
Now Add $bf{(1)}$ and $bf{(2);,}$ We get
$displaystyle (a+ib)+frac{10}{(a+ib)cdot (a-ib)}cdot (b+ia) = 5+4i$
So $displaystyle (a+ib)+frac{10icdot (a-ib)}{(a+ib)cdot (a-ib)} = 5+4iRightarrow (a+ib)+frac{10i}{(a+ib)}=5+4i$
Now Let $(a+ib)=z;,$ Then equation is $displaystyle z+frac{10i}{z}=5+4iRightarrow z^2-(5+4i)z+10i=0$
Now Solving the above equation we get $displaystyle z = frac{(5+4i)pm sqrt{(5+4i)^2-40i}}{2}=frac{(5+4i)pm sqrt{25-16}}{2}=frac{(5+4i)pm 3}{2}=4+2i;,1+2i$
So $z=x+iy=4+2iRightarrow (x,y)=(4,2)$ and $z=x+iy=1+2iRightarrow (x,y)=(1,2)$
My Question is , can we solve it without Using Complex number
If yes, The please explain here
Thanks
algebra-precalculus systems-of-equations
algebra-precalculus systems-of-equations
edited Jan 18 at 7:52
Michael Rozenberg
105k1892198
105k1892198
asked Aug 24 '14 at 8:27
juantheronjuantheron
34.3k1148143
34.3k1148143
$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43
add a comment |
$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43
$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43
$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Easy to see that $abneq0$.
Thus, our system is equal to
$$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
$$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
$$(5-a)b+(4-b)a=10$$ or
$$(2a-5)(b-2)=0.$$
The rest is smooth.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f907496%2ffind-all-ordered-pairs-a-b-in-a-frac10ba2b2-5-b-frac10aa%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Easy to see that $abneq0$.
Thus, our system is equal to
$$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
$$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
$$(5-a)b+(4-b)a=10$$ or
$$(2a-5)(b-2)=0.$$
The rest is smooth.
$endgroup$
add a comment |
$begingroup$
Easy to see that $abneq0$.
Thus, our system is equal to
$$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
$$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
$$(5-a)b+(4-b)a=10$$ or
$$(2a-5)(b-2)=0.$$
The rest is smooth.
$endgroup$
add a comment |
$begingroup$
Easy to see that $abneq0$.
Thus, our system is equal to
$$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
$$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
$$(5-a)b+(4-b)a=10$$ or
$$(2a-5)(b-2)=0.$$
The rest is smooth.
$endgroup$
Easy to see that $abneq0$.
Thus, our system is equal to
$$(5-a)b=frac{10b^2}{a^2+b^2}$$ and
$$(4-b)a=frac{10a^2}{a^2+b^2},$$ which after summing gives
$$(5-a)b+(4-b)a=10$$ or
$$(2a-5)(b-2)=0.$$
The rest is smooth.
answered Jan 18 at 7:50
Michael RozenbergMichael Rozenberg
105k1892198
105k1892198
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f907496%2ffind-all-ordered-pairs-a-b-in-a-frac10ba2b2-5-b-frac10aa%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
We have $$10b=(5-a)(a^2+b^2), 10a=(4-b)(a^2+b^2)$$ On division, $$frac ba=frac{5-a}{4-b}implies a^2-5a=b^2-4b$$ $$iff4a^2-20a=4b^2-16biff(2a-5)^2-(2b-2)^2=9$$ $$implies2a=3sectheta+5,2b=2+3tantheta$$
$endgroup$
– lab bhattacharjee
Aug 24 '14 at 8:43