Find the number of points of discontinuity












0












$begingroup$


Question Let $f(x)=[sin x+cos x]$ where $x in left(0,2piright)$ and $left[cdotright]$ denotes the greatest integer function.The number of points
of discontinuity of $f(x)$ is



$left(aright)6$



$left(bright)5$



$left(cright)4$



$left(dright)$3



My Approach $f(x)=left[sin x + cos xright] = left[sqrt{2}sinleft(x+frac{pi}{4}right)right]$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What do you know about the discontinuities of the greatest integer function?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 4:54






  • 2




    $begingroup$
    @астонвіллаолофмэллбэрг greatest integer functions are discont. at integral values of x
    $endgroup$
    – Kislay Tripathi
    Oct 30 '17 at 4:56








  • 1




    $begingroup$
    A little comment about MathJax: the left and right commands aren't necessary for every bracket. They are useful for adjusting the size of the brackets to what's in them. For example, $$(frac{a}{b})$$ is the result of (frac{a}{b}) whereas $$left(frac{a}{b}right)$$ is the result of left(frac{a}{b}right)
    $endgroup$
    – Theo Bendit
    Oct 30 '17 at 4:59






  • 1




    $begingroup$
    Ok, so where does this function attain integral values? There you shall find discontinuities, right?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:00






  • 2




    $begingroup$
    @KislayTripathi If you are correct, then discontinuities must occur at precisely these points. How many of them are there?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:04


















0












$begingroup$


Question Let $f(x)=[sin x+cos x]$ where $x in left(0,2piright)$ and $left[cdotright]$ denotes the greatest integer function.The number of points
of discontinuity of $f(x)$ is



$left(aright)6$



$left(bright)5$



$left(cright)4$



$left(dright)$3



My Approach $f(x)=left[sin x + cos xright] = left[sqrt{2}sinleft(x+frac{pi}{4}right)right]$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What do you know about the discontinuities of the greatest integer function?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 4:54






  • 2




    $begingroup$
    @астонвіллаолофмэллбэрг greatest integer functions are discont. at integral values of x
    $endgroup$
    – Kislay Tripathi
    Oct 30 '17 at 4:56








  • 1




    $begingroup$
    A little comment about MathJax: the left and right commands aren't necessary for every bracket. They are useful for adjusting the size of the brackets to what's in them. For example, $$(frac{a}{b})$$ is the result of (frac{a}{b}) whereas $$left(frac{a}{b}right)$$ is the result of left(frac{a}{b}right)
    $endgroup$
    – Theo Bendit
    Oct 30 '17 at 4:59






  • 1




    $begingroup$
    Ok, so where does this function attain integral values? There you shall find discontinuities, right?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:00






  • 2




    $begingroup$
    @KislayTripathi If you are correct, then discontinuities must occur at precisely these points. How many of them are there?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:04
















0












0








0





$begingroup$


Question Let $f(x)=[sin x+cos x]$ where $x in left(0,2piright)$ and $left[cdotright]$ denotes the greatest integer function.The number of points
of discontinuity of $f(x)$ is



$left(aright)6$



$left(bright)5$



$left(cright)4$



$left(dright)$3



My Approach $f(x)=left[sin x + cos xright] = left[sqrt{2}sinleft(x+frac{pi}{4}right)right]$










share|cite|improve this question











$endgroup$




Question Let $f(x)=[sin x+cos x]$ where $x in left(0,2piright)$ and $left[cdotright]$ denotes the greatest integer function.The number of points
of discontinuity of $f(x)$ is



$left(aright)6$



$left(bright)5$



$left(cright)4$



$left(dright)$3



My Approach $f(x)=left[sin x + cos xright] = left[sqrt{2}sinleft(x+frac{pi}{4}right)right]$







calculus continuity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 1 '17 at 6:21







user99914

















asked Oct 30 '17 at 4:42









Kislay TripathiKislay Tripathi

447224




447224








  • 1




    $begingroup$
    What do you know about the discontinuities of the greatest integer function?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 4:54






  • 2




    $begingroup$
    @астонвіллаолофмэллбэрг greatest integer functions are discont. at integral values of x
    $endgroup$
    – Kislay Tripathi
    Oct 30 '17 at 4:56








  • 1




    $begingroup$
    A little comment about MathJax: the left and right commands aren't necessary for every bracket. They are useful for adjusting the size of the brackets to what's in them. For example, $$(frac{a}{b})$$ is the result of (frac{a}{b}) whereas $$left(frac{a}{b}right)$$ is the result of left(frac{a}{b}right)
    $endgroup$
    – Theo Bendit
    Oct 30 '17 at 4:59






  • 1




    $begingroup$
    Ok, so where does this function attain integral values? There you shall find discontinuities, right?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:00






  • 2




    $begingroup$
    @KislayTripathi If you are correct, then discontinuities must occur at precisely these points. How many of them are there?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:04
















  • 1




    $begingroup$
    What do you know about the discontinuities of the greatest integer function?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 4:54






  • 2




    $begingroup$
    @астонвіллаолофмэллбэрг greatest integer functions are discont. at integral values of x
    $endgroup$
    – Kislay Tripathi
    Oct 30 '17 at 4:56








  • 1




    $begingroup$
    A little comment about MathJax: the left and right commands aren't necessary for every bracket. They are useful for adjusting the size of the brackets to what's in them. For example, $$(frac{a}{b})$$ is the result of (frac{a}{b}) whereas $$left(frac{a}{b}right)$$ is the result of left(frac{a}{b}right)
    $endgroup$
    – Theo Bendit
    Oct 30 '17 at 4:59






  • 1




    $begingroup$
    Ok, so where does this function attain integral values? There you shall find discontinuities, right?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:00






  • 2




    $begingroup$
    @KislayTripathi If you are correct, then discontinuities must occur at precisely these points. How many of them are there?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Oct 30 '17 at 5:04










1




1




$begingroup$
What do you know about the discontinuities of the greatest integer function?
$endgroup$
– астон вілла олоф мэллбэрг
Oct 30 '17 at 4:54




$begingroup$
What do you know about the discontinuities of the greatest integer function?
$endgroup$
– астон вілла олоф мэллбэрг
Oct 30 '17 at 4:54




2




2




$begingroup$
@астонвіллаолофмэллбэрг greatest integer functions are discont. at integral values of x
$endgroup$
– Kislay Tripathi
Oct 30 '17 at 4:56






$begingroup$
@астонвіллаолофмэллбэрг greatest integer functions are discont. at integral values of x
$endgroup$
– Kislay Tripathi
Oct 30 '17 at 4:56






1




1




$begingroup$
A little comment about MathJax: the left and right commands aren't necessary for every bracket. They are useful for adjusting the size of the brackets to what's in them. For example, $$(frac{a}{b})$$ is the result of (frac{a}{b}) whereas $$left(frac{a}{b}right)$$ is the result of left(frac{a}{b}right)
$endgroup$
– Theo Bendit
Oct 30 '17 at 4:59




$begingroup$
A little comment about MathJax: the left and right commands aren't necessary for every bracket. They are useful for adjusting the size of the brackets to what's in them. For example, $$(frac{a}{b})$$ is the result of (frac{a}{b}) whereas $$left(frac{a}{b}right)$$ is the result of left(frac{a}{b}right)
$endgroup$
– Theo Bendit
Oct 30 '17 at 4:59




1




1




$begingroup$
Ok, so where does this function attain integral values? There you shall find discontinuities, right?
$endgroup$
– астон вілла олоф мэллбэрг
Oct 30 '17 at 5:00




$begingroup$
Ok, so where does this function attain integral values? There you shall find discontinuities, right?
$endgroup$
– астон вілла олоф мэллбэрг
Oct 30 '17 at 5:00




2




2




$begingroup$
@KislayTripathi If you are correct, then discontinuities must occur at precisely these points. How many of them are there?
$endgroup$
– астон вілла олоф мэллбэрг
Oct 30 '17 at 5:04






$begingroup$
@KislayTripathi If you are correct, then discontinuities must occur at precisely these points. How many of them are there?
$endgroup$
– астон вілла олоф мэллбэрг
Oct 30 '17 at 5:04












1 Answer
1






active

oldest

votes


















1












$begingroup$

So you have written that $sin x + cos x = sqrt 2 sin(x + frac pi 4)$.



When does this take integral values? Well, we know that $- sqrt 2 leq sqrt 2 sin(x + frac pi 4) leq sqrt 2$, so it can take precisely three integral values, namely $0, pm 1$. There is a discontinuity whenever it takes one of these values.



We note that it takes the value $1$ at $x=0,2pi$, but these are outside our interval. Next, if $sin(x+ frac pi 4) = frac{1}{sqrt 2}$, then $x = frac {pi}{2}$. If $sin(x + frac pi 4) = 0$, then $x = frac{3pi}{4}, frac{7pi}{4}$, and finally, if $sin(x+ frac pi 4) = frac 1{sqrt 2}$, then $x = pi,frac{3pi}{2}$. So ,there are five values at which discontinuities exist, and I will confirm this by getting you the graph between the points:





where you can see that there are five discontinuities at the points of mention.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Your link is broken. I imagine it pointed to something like this.
    $endgroup$
    – mephistolotl
    Dec 1 '17 at 6:30











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2496050%2ffind-the-number-of-points-of-discontinuity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

So you have written that $sin x + cos x = sqrt 2 sin(x + frac pi 4)$.



When does this take integral values? Well, we know that $- sqrt 2 leq sqrt 2 sin(x + frac pi 4) leq sqrt 2$, so it can take precisely three integral values, namely $0, pm 1$. There is a discontinuity whenever it takes one of these values.



We note that it takes the value $1$ at $x=0,2pi$, but these are outside our interval. Next, if $sin(x+ frac pi 4) = frac{1}{sqrt 2}$, then $x = frac {pi}{2}$. If $sin(x + frac pi 4) = 0$, then $x = frac{3pi}{4}, frac{7pi}{4}$, and finally, if $sin(x+ frac pi 4) = frac 1{sqrt 2}$, then $x = pi,frac{3pi}{2}$. So ,there are five values at which discontinuities exist, and I will confirm this by getting you the graph between the points:





where you can see that there are five discontinuities at the points of mention.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Your link is broken. I imagine it pointed to something like this.
    $endgroup$
    – mephistolotl
    Dec 1 '17 at 6:30
















1












$begingroup$

So you have written that $sin x + cos x = sqrt 2 sin(x + frac pi 4)$.



When does this take integral values? Well, we know that $- sqrt 2 leq sqrt 2 sin(x + frac pi 4) leq sqrt 2$, so it can take precisely three integral values, namely $0, pm 1$. There is a discontinuity whenever it takes one of these values.



We note that it takes the value $1$ at $x=0,2pi$, but these are outside our interval. Next, if $sin(x+ frac pi 4) = frac{1}{sqrt 2}$, then $x = frac {pi}{2}$. If $sin(x + frac pi 4) = 0$, then $x = frac{3pi}{4}, frac{7pi}{4}$, and finally, if $sin(x+ frac pi 4) = frac 1{sqrt 2}$, then $x = pi,frac{3pi}{2}$. So ,there are five values at which discontinuities exist, and I will confirm this by getting you the graph between the points:





where you can see that there are five discontinuities at the points of mention.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Your link is broken. I imagine it pointed to something like this.
    $endgroup$
    – mephistolotl
    Dec 1 '17 at 6:30














1












1








1





$begingroup$

So you have written that $sin x + cos x = sqrt 2 sin(x + frac pi 4)$.



When does this take integral values? Well, we know that $- sqrt 2 leq sqrt 2 sin(x + frac pi 4) leq sqrt 2$, so it can take precisely three integral values, namely $0, pm 1$. There is a discontinuity whenever it takes one of these values.



We note that it takes the value $1$ at $x=0,2pi$, but these are outside our interval. Next, if $sin(x+ frac pi 4) = frac{1}{sqrt 2}$, then $x = frac {pi}{2}$. If $sin(x + frac pi 4) = 0$, then $x = frac{3pi}{4}, frac{7pi}{4}$, and finally, if $sin(x+ frac pi 4) = frac 1{sqrt 2}$, then $x = pi,frac{3pi}{2}$. So ,there are five values at which discontinuities exist, and I will confirm this by getting you the graph between the points:





where you can see that there are five discontinuities at the points of mention.






share|cite|improve this answer











$endgroup$



So you have written that $sin x + cos x = sqrt 2 sin(x + frac pi 4)$.



When does this take integral values? Well, we know that $- sqrt 2 leq sqrt 2 sin(x + frac pi 4) leq sqrt 2$, so it can take precisely three integral values, namely $0, pm 1$. There is a discontinuity whenever it takes one of these values.



We note that it takes the value $1$ at $x=0,2pi$, but these are outside our interval. Next, if $sin(x+ frac pi 4) = frac{1}{sqrt 2}$, then $x = frac {pi}{2}$. If $sin(x + frac pi 4) = 0$, then $x = frac{3pi}{4}, frac{7pi}{4}$, and finally, if $sin(x+ frac pi 4) = frac 1{sqrt 2}$, then $x = pi,frac{3pi}{2}$. So ,there are five values at which discontinuities exist, and I will confirm this by getting you the graph between the points:





where you can see that there are five discontinuities at the points of mention.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 18 at 6:16

























answered Oct 30 '17 at 5:22









астон вілла олоф мэллбэргастон вілла олоф мэллбэрг

38.8k33477




38.8k33477












  • $begingroup$
    Your link is broken. I imagine it pointed to something like this.
    $endgroup$
    – mephistolotl
    Dec 1 '17 at 6:30


















  • $begingroup$
    Your link is broken. I imagine it pointed to something like this.
    $endgroup$
    – mephistolotl
    Dec 1 '17 at 6:30
















$begingroup$
Your link is broken. I imagine it pointed to something like this.
$endgroup$
– mephistolotl
Dec 1 '17 at 6:30




$begingroup$
Your link is broken. I imagine it pointed to something like this.
$endgroup$
– mephistolotl
Dec 1 '17 at 6:30


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2496050%2ffind-the-number-of-points-of-discontinuity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]