“bounding” an unbounded operator
$begingroup$
I was wondering if, given a certain unbounded operator on a Hilbert space, it can (naively speaking) be "cutted" (or "bounded") by certain projections.
So, thinking about this in a more sensible way, I have the following question:
Let $T$ be a unbounded (densely defined) self-adjoint (positive) operator on $mathcal{H}$, and let ${P_lambda}_{lambda > 0}$ the spectral family of $T$. Then we can look at the following: $mathcal{H}_lambda:= P_{(lambda^{-1},lambda)}mathcal{H}$, where $P_{(lambda^{-1},lambda)}$ correspond to the Borel functional calculus on $T$ of the characteristic function on the interval $(lambda^{-1},lambda)$.
Is it true that, on $mathcal{H}_lambda$, $||Tx||leq lambda||x||$ ?
functional-analysis operator-theory spectral-theory unbounded-operators
$endgroup$
add a comment |
$begingroup$
I was wondering if, given a certain unbounded operator on a Hilbert space, it can (naively speaking) be "cutted" (or "bounded") by certain projections.
So, thinking about this in a more sensible way, I have the following question:
Let $T$ be a unbounded (densely defined) self-adjoint (positive) operator on $mathcal{H}$, and let ${P_lambda}_{lambda > 0}$ the spectral family of $T$. Then we can look at the following: $mathcal{H}_lambda:= P_{(lambda^{-1},lambda)}mathcal{H}$, where $P_{(lambda^{-1},lambda)}$ correspond to the Borel functional calculus on $T$ of the characteristic function on the interval $(lambda^{-1},lambda)$.
Is it true that, on $mathcal{H}_lambda$, $||Tx||leq lambda||x||$ ?
functional-analysis operator-theory spectral-theory unbounded-operators
$endgroup$
add a comment |
$begingroup$
I was wondering if, given a certain unbounded operator on a Hilbert space, it can (naively speaking) be "cutted" (or "bounded") by certain projections.
So, thinking about this in a more sensible way, I have the following question:
Let $T$ be a unbounded (densely defined) self-adjoint (positive) operator on $mathcal{H}$, and let ${P_lambda}_{lambda > 0}$ the spectral family of $T$. Then we can look at the following: $mathcal{H}_lambda:= P_{(lambda^{-1},lambda)}mathcal{H}$, where $P_{(lambda^{-1},lambda)}$ correspond to the Borel functional calculus on $T$ of the characteristic function on the interval $(lambda^{-1},lambda)$.
Is it true that, on $mathcal{H}_lambda$, $||Tx||leq lambda||x||$ ?
functional-analysis operator-theory spectral-theory unbounded-operators
$endgroup$
I was wondering if, given a certain unbounded operator on a Hilbert space, it can (naively speaking) be "cutted" (or "bounded") by certain projections.
So, thinking about this in a more sensible way, I have the following question:
Let $T$ be a unbounded (densely defined) self-adjoint (positive) operator on $mathcal{H}$, and let ${P_lambda}_{lambda > 0}$ the spectral family of $T$. Then we can look at the following: $mathcal{H}_lambda:= P_{(lambda^{-1},lambda)}mathcal{H}$, where $P_{(lambda^{-1},lambda)}$ correspond to the Borel functional calculus on $T$ of the characteristic function on the interval $(lambda^{-1},lambda)$.
Is it true that, on $mathcal{H}_lambda$, $||Tx||leq lambda||x||$ ?
functional-analysis operator-theory spectral-theory unbounded-operators
functional-analysis operator-theory spectral-theory unbounded-operators
asked Jan 18 at 0:16
HaroldFHaroldF
591416
591416
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, of course.
The functional calculus preserves positivity. The function $(lambda-t),1_{(0,lambda)}(t)$ is non-negative, so the operator $(lambda,I-T),P_{(0,lambda)}$ is positive. That is, $T,P_{(0,lambda)}leqlambda,P_{(0,lambda)}$. In particular, $|T,P_{(0,lambda)}|leqlambda$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077699%2fbounding-an-unbounded-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, of course.
The functional calculus preserves positivity. The function $(lambda-t),1_{(0,lambda)}(t)$ is non-negative, so the operator $(lambda,I-T),P_{(0,lambda)}$ is positive. That is, $T,P_{(0,lambda)}leqlambda,P_{(0,lambda)}$. In particular, $|T,P_{(0,lambda)}|leqlambda$.
$endgroup$
add a comment |
$begingroup$
Yes, of course.
The functional calculus preserves positivity. The function $(lambda-t),1_{(0,lambda)}(t)$ is non-negative, so the operator $(lambda,I-T),P_{(0,lambda)}$ is positive. That is, $T,P_{(0,lambda)}leqlambda,P_{(0,lambda)}$. In particular, $|T,P_{(0,lambda)}|leqlambda$.
$endgroup$
add a comment |
$begingroup$
Yes, of course.
The functional calculus preserves positivity. The function $(lambda-t),1_{(0,lambda)}(t)$ is non-negative, so the operator $(lambda,I-T),P_{(0,lambda)}$ is positive. That is, $T,P_{(0,lambda)}leqlambda,P_{(0,lambda)}$. In particular, $|T,P_{(0,lambda)}|leqlambda$.
$endgroup$
Yes, of course.
The functional calculus preserves positivity. The function $(lambda-t),1_{(0,lambda)}(t)$ is non-negative, so the operator $(lambda,I-T),P_{(0,lambda)}$ is positive. That is, $T,P_{(0,lambda)}leqlambda,P_{(0,lambda)}$. In particular, $|T,P_{(0,lambda)}|leqlambda$.
answered Jan 18 at 3:47


Martin ArgeramiMartin Argerami
127k1182183
127k1182183
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077699%2fbounding-an-unbounded-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown