Derivation of integration property of Fourier transform












1












$begingroup$


For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as



$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$



I would like to know what is the formula for:



$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$



What I have so far is:



begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}



and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.



I wonder how did they got the corresponding result on this page:










share|cite|improve this question











$endgroup$












  • $begingroup$
    That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
    $endgroup$
    – rubik
    Feb 22 '17 at 9:42












  • $begingroup$
    ok, let me edit.
    $endgroup$
    – aberdysh
    Feb 22 '17 at 9:45
















1












$begingroup$


For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as



$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$



I would like to know what is the formula for:



$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$



What I have so far is:



begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}



and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.



I wonder how did they got the corresponding result on this page:










share|cite|improve this question











$endgroup$












  • $begingroup$
    That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
    $endgroup$
    – rubik
    Feb 22 '17 at 9:42












  • $begingroup$
    ok, let me edit.
    $endgroup$
    – aberdysh
    Feb 22 '17 at 9:45














1












1








1


1



$begingroup$


For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as



$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$



I would like to know what is the formula for:



$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$



What I have so far is:



begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}



and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.



I wonder how did they got the corresponding result on this page:










share|cite|improve this question











$endgroup$




For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as



$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$



I would like to know what is the formula for:



$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$



What I have so far is:



begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}



and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.



I wonder how did they got the corresponding result on this page:







integration complex-analysis analysis fourier-analysis fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 22 '17 at 9:45







aberdysh

















asked Feb 22 '17 at 9:39









aberdyshaberdysh

337311




337311












  • $begingroup$
    That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
    $endgroup$
    – rubik
    Feb 22 '17 at 9:42












  • $begingroup$
    ok, let me edit.
    $endgroup$
    – aberdysh
    Feb 22 '17 at 9:45


















  • $begingroup$
    That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
    $endgroup$
    – rubik
    Feb 22 '17 at 9:42












  • $begingroup$
    ok, let me edit.
    $endgroup$
    – aberdysh
    Feb 22 '17 at 9:45
















$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42






$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42














$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45




$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45










2 Answers
2






active

oldest

votes


















0












$begingroup$

Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$



    • When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.



      Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$



    • Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$







    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
      $endgroup$
      – aberdysh
      Feb 22 '17 at 22:51












    • $begingroup$
      @aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
      $endgroup$
      – reuns
      Feb 22 '17 at 23:54













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2155996%2fderivation-of-integration-property-of-fourier-transform%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.






        share|cite|improve this answer









        $endgroup$



        Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 22 '17 at 9:57









        BlazejBlazej

        1,485620




        1,485620























            0












            $begingroup$



            • When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.



              Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$



            • Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
              $endgroup$
              – aberdysh
              Feb 22 '17 at 22:51












            • $begingroup$
              @aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
              $endgroup$
              – reuns
              Feb 22 '17 at 23:54


















            0












            $begingroup$



            • When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.



              Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$



            • Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
              $endgroup$
              – aberdysh
              Feb 22 '17 at 22:51












            • $begingroup$
              @aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
              $endgroup$
              – reuns
              Feb 22 '17 at 23:54
















            0












            0








            0





            $begingroup$



            • When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.



              Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$



            • Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$







            share|cite|improve this answer











            $endgroup$





            • When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.



              Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$



            • Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$








            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Feb 22 '17 at 10:41

























            answered Feb 22 '17 at 10:25









            reunsreuns

            20k21148




            20k21148












            • $begingroup$
              I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
              $endgroup$
              – aberdysh
              Feb 22 '17 at 22:51












            • $begingroup$
              @aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
              $endgroup$
              – reuns
              Feb 22 '17 at 23:54




















            • $begingroup$
              I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
              $endgroup$
              – aberdysh
              Feb 22 '17 at 22:51












            • $begingroup$
              @aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
              $endgroup$
              – reuns
              Feb 22 '17 at 23:54


















            $begingroup$
            I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
            $endgroup$
            – aberdysh
            Feb 22 '17 at 22:51






            $begingroup$
            I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
            $endgroup$
            – aberdysh
            Feb 22 '17 at 22:51














            $begingroup$
            @aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
            $endgroup$
            – reuns
            Feb 22 '17 at 23:54






            $begingroup$
            @aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
            $endgroup$
            – reuns
            Feb 22 '17 at 23:54




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2155996%2fderivation-of-integration-property-of-fourier-transform%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]