Derivation of integration property of Fourier transform
$begingroup$
For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as
$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$
I would like to know what is the formula for:
$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$
What I have so far is:
begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}
and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.
I wonder how did they got the corresponding result on this page:
integration complex-analysis analysis fourier-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as
$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$
I would like to know what is the formula for:
$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$
What I have so far is:
begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}
and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.
I wonder how did they got the corresponding result on this page:
integration complex-analysis analysis fourier-analysis fourier-transform
$endgroup$
$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42
$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45
add a comment |
$begingroup$
For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as
$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$
I would like to know what is the formula for:
$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$
What I have so far is:
begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}
and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.
I wonder how did they got the corresponding result on this page:
integration complex-analysis analysis fourier-analysis fourier-transform
$endgroup$
For $f in mathcal{S}(mathbb R)$, where $mathcal{S}$ is a Schwartz space, denote it's Fourier transform as
$$
hat{f}(omega) := mathcal{F}f(t) := int_{-infty}^{infty} f(t) e^{-2 pi i omega t} dt
$$
and corresponding inverse Fourier transform as
$$
mathcal{F}^{-1} hat{f}(omega) := int_{-infty}^{infty} e^{2 pi i t omega} hat{f}(omega) domega
$$
I would like to know what is the formula for:
$$
mathcal{F} left[ int_{-infty}^t f(tau) dtau right]
$$
What I have so far is:
begin{alignat}{2}
f(tau) &= mathcal{F}^{-1}hat{f}(omega) qquad implies \
int_{-infty}^t f(tau) dtau &= int_{-infty}^t mathcal{F}^{-1}hat{f}(omega) dtau \
&= int_{-infty}^t left[ int_{-infty}^infty e^{2 pi i tau omega} hat{f}(omega) domega right] dtau \
&= int_{-infty}^infty hat{f}(omega) int_{-infty}^t e^{2 pi i tau omega} dtau, domega \
&= int_{-infty}^infty hat{f}(omega) (2 pi i omega)^{-1}left[ e^{2 pi i tau omega} right]_{-infty}^t domega \
end{alignat}
and then I have a problem that the limit
$$
lim_{tau to -infty}e^{2 pi i tau omega}
$$
is not well defined.
I wonder how did they got the corresponding result on this page:
integration complex-analysis analysis fourier-analysis fourier-transform
integration complex-analysis analysis fourier-analysis fourier-transform
edited Feb 22 '17 at 9:45
aberdysh
asked Feb 22 '17 at 9:39
aberdyshaberdysh
337311
337311
$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42
$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45
add a comment |
$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42
$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45
$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42
$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42
$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45
$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.
$endgroup$
add a comment |
$begingroup$
When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.
Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$
Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$
$endgroup$
$begingroup$
I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
$endgroup$
– aberdysh
Feb 22 '17 at 22:51
$begingroup$
@aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
$endgroup$
– reuns
Feb 22 '17 at 23:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2155996%2fderivation-of-integration-property-of-fourier-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.
$endgroup$
add a comment |
$begingroup$
Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.
$endgroup$
add a comment |
$begingroup$
Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.
$endgroup$
Simple way is to calculate the Fourier transform of the distribution $theta(x)$ and apply convolution theorem. To get the first part, it is convenient to replace $theta (x)$ by $theta(x) e^{-epsilon x}$ and take the limit $epsilon to 0$ through positive values only after calculating the Fourier transform. This is correct because Fourier transformation is continuous in the space of distributions with weak-* topology.
answered Feb 22 '17 at 9:57
BlazejBlazej
1,485620
1,485620
add a comment |
add a comment |
$begingroup$
When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.
Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$
Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$
$endgroup$
$begingroup$
I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
$endgroup$
– aberdysh
Feb 22 '17 at 22:51
$begingroup$
@aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
$endgroup$
– reuns
Feb 22 '17 at 23:54
add a comment |
$begingroup$
When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.
Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$
Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$
$endgroup$
$begingroup$
I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
$endgroup$
– aberdysh
Feb 22 '17 at 22:51
$begingroup$
@aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
$endgroup$
– reuns
Feb 22 '17 at 23:54
add a comment |
$begingroup$
When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.
Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$
Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$
$endgroup$
When $f in S(mathbb{R})$ and $int_{-infty}^infty f(t) dt = 0$ then $int_{-infty}^t f(tau)dtau in S(mathbb{R})$.
Integrating by parts $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = int_{-infty}^inftyint_{-infty}^t f(tau) dtau e^{-2i pi xi t} dt = int_{-infty}^infty f(t) frac{e^{-2i pi xi t}}{2i pi xi} dt = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)$$
Otherwise $mathcal{F}[int_{-infty}^t f(tau)dtau]$ exists only as the Fourier transform of a tempered distribution, and the result becomes $$mathcal{F}[int_{-infty}^t f(tau)dtau](xi) = frac{1}{2i pi xi} mathcal{F}[ f(t)](xi)+ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$$
edited Feb 22 '17 at 10:41
answered Feb 22 '17 at 10:25
reunsreuns
20k21148
20k21148
$begingroup$
I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
$endgroup$
– aberdysh
Feb 22 '17 at 22:51
$begingroup$
@aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
$endgroup$
– reuns
Feb 22 '17 at 23:54
add a comment |
$begingroup$
I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
$endgroup$
– aberdysh
Feb 22 '17 at 22:51
$begingroup$
@aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
$endgroup$
– reuns
Feb 22 '17 at 23:54
$begingroup$
I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
$endgroup$
– aberdysh
Feb 22 '17 at 22:51
$begingroup$
I don't see where $ frac{int_{-infty}^infty f(t) dt}{2}delta(xi)$ comes from
$endgroup$
– aberdysh
Feb 22 '17 at 22:51
$begingroup$
@aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
$endgroup$
– reuns
Feb 22 '17 at 23:54
$begingroup$
@aberdysh it comes from the Fourier transform of distributions. Let $H(xi) = mathcal{F}[int_{-infty}^t f(tau)dtau](xi)$ then using the properties of the Fourier transform of distributions $2i pi xi H(xi)= mathcal{F}[f(t)](xi)$ i.e. $H(xi) = frac{1}{2i pi xi} mathcal{F}[f(t)](xi)+C delta(xi)$ for some $C$
$endgroup$
– reuns
Feb 22 '17 at 23:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2155996%2fderivation-of-integration-property-of-fourier-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
That's not the correct definition for the Fourier transform of $L^2(mathbb R^n)$ functions, because the integral might not be convergent. Instead, you define the transform pointwise (like you did) for $mathcal S(mathbb R^n)$ and $L^1(mathbb R^n)$ functions and then, since $mathcal S(mathbb R^n)$ is dense in $L^2(mathbb R^n)$ you extend the Fourier transform operator by continuity.
$endgroup$
– rubik
Feb 22 '17 at 9:42
$begingroup$
ok, let me edit.
$endgroup$
– aberdysh
Feb 22 '17 at 9:45