Not getting the right answer with alternate completing the square method on...
$begingroup$
So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:
$$x^2-x=x^2-x+{1over4}$$ and then
$$x^2-x+{1over4}=(x-frac{1}{2})^2$$
which I understand, but is not the first option that popped into my head.
What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:
$intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$
denominator:
$$3+4x-4x^2$$
$$(-4x^2+4x-1)+4$$
$$-(4x^2-4x+1)+4$$
$$-(2x-1)^2+4$$
So the integral is now:
$$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$
So I do the rest of the work by using trig substitution now:
$u=2x-1$
$x=frac{u+1}{2}$
Now I subbed in the trig identities:
$u=2sintheta$
$du=2costheta dtheta$
$$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$
$$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$
$$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$
For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$
$$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$
$$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$
On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:
$$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$
This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.
calculus indefinite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:
$$x^2-x=x^2-x+{1over4}$$ and then
$$x^2-x+{1over4}=(x-frac{1}{2})^2$$
which I understand, but is not the first option that popped into my head.
What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:
$intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$
denominator:
$$3+4x-4x^2$$
$$(-4x^2+4x-1)+4$$
$$-(4x^2-4x+1)+4$$
$$-(2x-1)^2+4$$
So the integral is now:
$$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$
So I do the rest of the work by using trig substitution now:
$u=2x-1$
$x=frac{u+1}{2}$
Now I subbed in the trig identities:
$u=2sintheta$
$du=2costheta dtheta$
$$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$
$$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$
$$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$
For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$
$$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$
$$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$
On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:
$$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$
This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.
calculus indefinite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:
$$x^2-x=x^2-x+{1over4}$$ and then
$$x^2-x+{1over4}=(x-frac{1}{2})^2$$
which I understand, but is not the first option that popped into my head.
What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:
$intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$
denominator:
$$3+4x-4x^2$$
$$(-4x^2+4x-1)+4$$
$$-(4x^2-4x+1)+4$$
$$-(2x-1)^2+4$$
So the integral is now:
$$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$
So I do the rest of the work by using trig substitution now:
$u=2x-1$
$x=frac{u+1}{2}$
Now I subbed in the trig identities:
$u=2sintheta$
$du=2costheta dtheta$
$$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$
$$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$
$$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$
For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$
$$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$
$$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$
On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:
$$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$
This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.
calculus indefinite-integrals trigonometric-integrals
$endgroup$
So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:
$$x^2-x=x^2-x+{1over4}$$ and then
$$x^2-x+{1over4}=(x-frac{1}{2})^2$$
which I understand, but is not the first option that popped into my head.
What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:
$intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$
denominator:
$$3+4x-4x^2$$
$$(-4x^2+4x-1)+4$$
$$-(4x^2-4x+1)+4$$
$$-(2x-1)^2+4$$
So the integral is now:
$$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$
So I do the rest of the work by using trig substitution now:
$u=2x-1$
$x=frac{u+1}{2}$
Now I subbed in the trig identities:
$u=2sintheta$
$du=2costheta dtheta$
$$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$
$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$
$$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$
$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$
$$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$
$$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$
For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$
$$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$
$$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$
On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:
$$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$
This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.
calculus indefinite-integrals trigonometric-integrals
calculus indefinite-integrals trigonometric-integrals
edited Jan 9 at 8:52
Mostafa Ayaz
15.4k3939
15.4k3939
asked Jan 9 at 7:37
Ben DreslinskiBen Dreslinski
224
224
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Except some minor mistakes, your solution is correct but you led to wrong answer.
Mistake 1
In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.
Mistake 2
From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.
Fixing up
Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$
$endgroup$
$begingroup$
So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
$endgroup$
– Ben Dreslinski
Jan 9 at 19:04
1
$begingroup$
Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
$endgroup$
– Mostafa Ayaz
Jan 9 at 19:50
$begingroup$
So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
$endgroup$
– Ben Dreslinski
Jan 9 at 21:35
$begingroup$
Yes you got it. That's accurate...
$endgroup$
– Mostafa Ayaz
Jan 10 at 10:11
add a comment |
$begingroup$
Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.
First 4 steps:
Change $x=t+frac12$
$$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$- $$intfrac{t}{(1-t^2)^{3/2}}dt=
frac{1}{sqrt{1-{{t}^{2}}}}$$ - $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$
- $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067187%2fnot-getting-the-right-answer-with-alternate-completing-the-square-method-on-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Except some minor mistakes, your solution is correct but you led to wrong answer.
Mistake 1
In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.
Mistake 2
From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.
Fixing up
Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$
$endgroup$
$begingroup$
So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
$endgroup$
– Ben Dreslinski
Jan 9 at 19:04
1
$begingroup$
Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
$endgroup$
– Mostafa Ayaz
Jan 9 at 19:50
$begingroup$
So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
$endgroup$
– Ben Dreslinski
Jan 9 at 21:35
$begingroup$
Yes you got it. That's accurate...
$endgroup$
– Mostafa Ayaz
Jan 10 at 10:11
add a comment |
$begingroup$
Except some minor mistakes, your solution is correct but you led to wrong answer.
Mistake 1
In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.
Mistake 2
From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.
Fixing up
Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$
$endgroup$
$begingroup$
So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
$endgroup$
– Ben Dreslinski
Jan 9 at 19:04
1
$begingroup$
Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
$endgroup$
– Mostafa Ayaz
Jan 9 at 19:50
$begingroup$
So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
$endgroup$
– Ben Dreslinski
Jan 9 at 21:35
$begingroup$
Yes you got it. That's accurate...
$endgroup$
– Mostafa Ayaz
Jan 10 at 10:11
add a comment |
$begingroup$
Except some minor mistakes, your solution is correct but you led to wrong answer.
Mistake 1
In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.
Mistake 2
From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.
Fixing up
Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$
$endgroup$
Except some minor mistakes, your solution is correct but you led to wrong answer.
Mistake 1
In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.
Mistake 2
From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.
Fixing up
Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$
answered Jan 9 at 8:55
Mostafa AyazMostafa Ayaz
15.4k3939
15.4k3939
$begingroup$
So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
$endgroup$
– Ben Dreslinski
Jan 9 at 19:04
1
$begingroup$
Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
$endgroup$
– Mostafa Ayaz
Jan 9 at 19:50
$begingroup$
So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
$endgroup$
– Ben Dreslinski
Jan 9 at 21:35
$begingroup$
Yes you got it. That's accurate...
$endgroup$
– Mostafa Ayaz
Jan 10 at 10:11
add a comment |
$begingroup$
So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
$endgroup$
– Ben Dreslinski
Jan 9 at 19:04
1
$begingroup$
Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
$endgroup$
– Mostafa Ayaz
Jan 9 at 19:50
$begingroup$
So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
$endgroup$
– Ben Dreslinski
Jan 9 at 21:35
$begingroup$
Yes you got it. That's accurate...
$endgroup$
– Mostafa Ayaz
Jan 10 at 10:11
$begingroup$
So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
$endgroup$
– Ben Dreslinski
Jan 9 at 19:04
$begingroup$
So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
$endgroup$
– Ben Dreslinski
Jan 9 at 19:04
1
1
$begingroup$
Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
$endgroup$
– Mostafa Ayaz
Jan 9 at 19:50
$begingroup$
Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
$endgroup$
– Mostafa Ayaz
Jan 9 at 19:50
$begingroup$
So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
$endgroup$
– Ben Dreslinski
Jan 9 at 21:35
$begingroup$
So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
$endgroup$
– Ben Dreslinski
Jan 9 at 21:35
$begingroup$
Yes you got it. That's accurate...
$endgroup$
– Mostafa Ayaz
Jan 10 at 10:11
$begingroup$
Yes you got it. That's accurate...
$endgroup$
– Mostafa Ayaz
Jan 10 at 10:11
add a comment |
$begingroup$
Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.
First 4 steps:
Change $x=t+frac12$
$$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$- $$intfrac{t}{(1-t^2)^{3/2}}dt=
frac{1}{sqrt{1-{{t}^{2}}}}$$ - $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$
- $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$
$endgroup$
add a comment |
$begingroup$
Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.
First 4 steps:
Change $x=t+frac12$
$$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$- $$intfrac{t}{(1-t^2)^{3/2}}dt=
frac{1}{sqrt{1-{{t}^{2}}}}$$ - $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$
- $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$
$endgroup$
add a comment |
$begingroup$
Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.
First 4 steps:
Change $x=t+frac12$
$$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$- $$intfrac{t}{(1-t^2)^{3/2}}dt=
frac{1}{sqrt{1-{{t}^{2}}}}$$ - $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$
- $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$
$endgroup$
Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.
First 4 steps:
Change $x=t+frac12$
$$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$- $$intfrac{t}{(1-t^2)^{3/2}}dt=
frac{1}{sqrt{1-{{t}^{2}}}}$$ - $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$
- $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$
answered Jan 9 at 21:24
Aleksas DomarkasAleksas Domarkas
1,1946
1,1946
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067187%2fnot-getting-the-right-answer-with-alternate-completing-the-square-method-on-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown