Not getting the right answer with alternate completing the square method on...












1












$begingroup$


So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:



$$x^2-x=x^2-x+{1over4}$$ and then



$$x^2-x+{1over4}=(x-frac{1}{2})^2$$



which I understand, but is not the first option that popped into my head.



What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:



$intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$



denominator:



$$3+4x-4x^2$$
$$(-4x^2+4x-1)+4$$
$$-(4x^2-4x+1)+4$$
$$-(2x-1)^2+4$$



So the integral is now:



$$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$



So I do the rest of the work by using trig substitution now:



$u=2x-1$



$x=frac{u+1}{2}$



Now I subbed in the trig identities:



$u=2sintheta$



$du=2costheta dtheta$



$$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$



$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$



$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$



$$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$



$$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$



$$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



$$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$



$$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$



$$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$



$$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$



For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$



$$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$



$$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$



On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:



$$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$



This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:



    $$x^2-x=x^2-x+{1over4}$$ and then



    $$x^2-x+{1over4}=(x-frac{1}{2})^2$$



    which I understand, but is not the first option that popped into my head.



    What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:



    $intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$



    denominator:



    $$3+4x-4x^2$$
    $$(-4x^2+4x-1)+4$$
    $$-(4x^2-4x+1)+4$$
    $$-(2x-1)^2+4$$



    So the integral is now:



    $$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$



    So I do the rest of the work by using trig substitution now:



    $u=2x-1$



    $x=frac{u+1}{2}$



    Now I subbed in the trig identities:



    $u=2sintheta$



    $du=2costheta dtheta$



    $$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$



    $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$



    $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$



    $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$



    $$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$



    $$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



    $$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



    $$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$



    $$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$



    $$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$



    $$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$



    For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$



    $$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$



    $$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$



    On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:



    $$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$



    This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:



      $$x^2-x=x^2-x+{1over4}$$ and then



      $$x^2-x+{1over4}=(x-frac{1}{2})^2$$



      which I understand, but is not the first option that popped into my head.



      What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:



      $intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$



      denominator:



      $$3+4x-4x^2$$
      $$(-4x^2+4x-1)+4$$
      $$-(4x^2-4x+1)+4$$
      $$-(2x-1)^2+4$$



      So the integral is now:



      $$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$



      So I do the rest of the work by using trig substitution now:



      $u=2x-1$



      $x=frac{u+1}{2}$



      Now I subbed in the trig identities:



      $u=2sintheta$



      $du=2costheta dtheta$



      $$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$



      $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$



      $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$



      $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$



      $$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$



      $$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



      $$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



      $$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$



      $$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$



      $$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$



      $$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$



      For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$



      $$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$



      $$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$



      On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:



      $$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$



      This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.










      share|cite|improve this question











      $endgroup$




      So I've looked up how to do this problem and when they complete the square it's using the $(frac{-b}{a})^2$ method where, in the denominator, they factor out the $4$, and then make:



      $$x^2-x=x^2-x+{1over4}$$ and then



      $$x^2-x+{1over4}=(x-frac{1}{2})^2$$



      which I understand, but is not the first option that popped into my head.



      What I don't understand is why all the tutorials I've looked up are not completing the square in the traditional method. Here's my work:



      $intfrac{x^2}{sqrt{3+4x-4x^2}^3}dx$



      denominator:



      $$3+4x-4x^2$$
      $$(-4x^2+4x-1)+4$$
      $$-(4x^2-4x+1)+4$$
      $$-(2x-1)^2+4$$



      So the integral is now:



      $$intfrac{x^2}{(4-u^2)^frac{3}{2}}$$



      So I do the rest of the work by using trig substitution now:



      $u=2x-1$



      $x=frac{u+1}{2}$



      Now I subbed in the trig identities:



      $u=2sintheta$



      $du=2costheta dtheta$



      $$intfrac{(frac{u+1}{2})^22costheta}{sqrt{4-4sin^2theta}^3}dtheta$$



      $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{sqrt{4cos^2theta}^3}dtheta$$



      $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{(2costheta)^3}dtheta$$



      $$intfrac{frac{(2sintheta+1)^2}{4}2costheta}{8cos^3theta}dtheta$$



      $$intfrac{frac{(4sin^2theta+4sintheta+1)}{4}2costheta}{8cos^3theta}dtheta$$



      $$intfrac{(frac{4sin^2theta}{4}+frac{4sintheta}{4}+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



      $$intfrac{(sin^2theta+sintheta+frac{1}{4})2costheta}{8cos^3theta}dtheta$$



      $$intfrac{(sin^2theta+sintheta+frac{1}{4})}{8cos^3theta}*frac{2costheta}{1}dtheta$$



      $$intfrac{(sin^2theta+sintheta+frac{1}{4})}{4cos^2theta}dtheta$$



      $$intfrac{sin^2theta}{4cos^2theta}dtheta+intfrac{sintheta}{4cos^2theta}dtheta+intfrac{frac{1}{4}}{4cos^2theta}dtheta$$



      $$frac{1}{4}int tan^2theta dtheta+frac{1}{4}intfrac{sintheta}{cos^2theta}dtheta+intfrac{1}{16cos^2theta}dtheta$$



      For the second integral, I subbed $u=costheta$ and $-du=sintheta dtheta$



      $$frac{1}{4}int sec^2theta-1dtheta-frac{1}{4}intfrac{du}{u^2}+frac{1}{16}int sec^2theta dtheta$$



      $$[frac{tantheta}{4}-frac{theta}{4}]+[frac{1}{4costheta}]+[frac{tantheta}{16}]+C$$



      On a right triangle where $sintheta=frac{2x-1}{2}$ and $costheta=frac{sqrt{4-(2x-1)^2}}{2}$, I subbed these values back in to make the integral in terms of $x$:



      $$frac{2x-1}{4sqrt{4-(2x-1)^2}}-frac{arcsin(frac{2x-1}{2})}{4}+frac{1}{4(frac{sqrt{4-(2x-1)^2}}{2})}+frac{2x-1}{16sqrt{4-(2x-1)^2}}+C$$



      This does not seem to be the right answer when I compare it to a calculator answer, so I'm guessing I either completed the square wrong or made an algebraic mistake? I've done this problem three or four times now and am getting a little frustrated over what I'm guessing is a easy fix. If anyone can help, I'd really appreciate it.







      calculus indefinite-integrals trigonometric-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 9 at 8:52









      Mostafa Ayaz

      15.4k3939




      15.4k3939










      asked Jan 9 at 7:37









      Ben DreslinskiBen Dreslinski

      224




      224






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Except some minor mistakes, your solution is correct but you led to wrong answer.



          Mistake 1



          In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.



          Mistake 2



          From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.



          Fixing up



          Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
            $endgroup$
            – Ben Dreslinski
            Jan 9 at 19:04






          • 1




            $begingroup$
            Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
            $endgroup$
            – Mostafa Ayaz
            Jan 9 at 19:50










          • $begingroup$
            So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
            $endgroup$
            – Ben Dreslinski
            Jan 9 at 21:35










          • $begingroup$
            Yes you got it. That's accurate...
            $endgroup$
            – Mostafa Ayaz
            Jan 10 at 10:11





















          0












          $begingroup$

          Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.



          First 4 steps:




          • Change $x=t+frac12$
            $$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
            frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$


          • $$intfrac{t}{(1-t^2)^{3/2}}dt=
            frac{1}{sqrt{1-{{t}^{2}}}}$$

          • $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$

          • $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067187%2fnot-getting-the-right-answer-with-alternate-completing-the-square-method-on-in%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Except some minor mistakes, your solution is correct but you led to wrong answer.



            Mistake 1



            In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.



            Mistake 2



            From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.



            Fixing up



            Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 19:04






            • 1




              $begingroup$
              Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
              $endgroup$
              – Mostafa Ayaz
              Jan 9 at 19:50










            • $begingroup$
              So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 21:35










            • $begingroup$
              Yes you got it. That's accurate...
              $endgroup$
              – Mostafa Ayaz
              Jan 10 at 10:11


















            3












            $begingroup$

            Except some minor mistakes, your solution is correct but you led to wrong answer.



            Mistake 1



            In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.



            Mistake 2



            From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.



            Fixing up



            Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 19:04






            • 1




              $begingroup$
              Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
              $endgroup$
              – Mostafa Ayaz
              Jan 9 at 19:50










            • $begingroup$
              So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 21:35










            • $begingroup$
              Yes you got it. That's accurate...
              $endgroup$
              – Mostafa Ayaz
              Jan 10 at 10:11
















            3












            3








            3





            $begingroup$

            Except some minor mistakes, your solution is correct but you led to wrong answer.



            Mistake 1



            In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.



            Mistake 2



            From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.



            Fixing up



            Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$






            share|cite|improve this answer









            $endgroup$



            Except some minor mistakes, your solution is correct but you led to wrong answer.



            Mistake 1



            In the first integral after substituting $u=sin theta$ you used $dx=du$ while $dx={1over 2}du$.



            Mistake 2



            From $2$nd to $3$rd integral, you used $|cos theta|=cos theta$ while you should have dealt with $|cos theta|$ till the result.



            Fixing up



            Fixing these two mistakes, the final integral to be solved would become$$intfrac{sin^2theta}{8costheta|costheta|}dtheta+intfrac{sintheta}{8costheta|costheta|}dtheta+intfrac{1}{32costheta|costheta|}dtheta\={4+5sintheta-4thetacosthetaover 32|costheta|}+C$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 9 at 8:55









            Mostafa AyazMostafa Ayaz

            15.4k3939




            15.4k3939












            • $begingroup$
              So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 19:04






            • 1




              $begingroup$
              Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
              $endgroup$
              – Mostafa Ayaz
              Jan 9 at 19:50










            • $begingroup$
              So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 21:35










            • $begingroup$
              Yes you got it. That's accurate...
              $endgroup$
              – Mostafa Ayaz
              Jan 10 at 10:11




















            • $begingroup$
              So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 19:04






            • 1




              $begingroup$
              Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
              $endgroup$
              – Mostafa Ayaz
              Jan 9 at 19:50










            • $begingroup$
              So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
              $endgroup$
              – Ben Dreslinski
              Jan 9 at 21:35










            • $begingroup$
              Yes you got it. That's accurate...
              $endgroup$
              – Mostafa Ayaz
              Jan 10 at 10:11


















            $begingroup$
            So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
            $endgroup$
            – Ben Dreslinski
            Jan 9 at 19:04




            $begingroup$
            So my $du$ is incorrect because where $u=2x-1$, $du=2dx$, thus $dx=frac{1}{2}du$? I think I understand that, but doesn't $(4cos^2theta)^frac{3}{2}$ turn into $$sqrt{4cos^2theta}sqrt{4cos^2theta}sqrt{4cos^2theta}$$ which is equivalent to $$(2costheta)(2costheta)(2costheta)$$ so where do the absolute value signs come from? Unless that's just some rule I'm not aware of.
            $endgroup$
            – Ben Dreslinski
            Jan 9 at 19:04




            1




            1




            $begingroup$
            Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
            $endgroup$
            – Mostafa Ayaz
            Jan 9 at 19:50




            $begingroup$
            Note that $$sqrt {x^2}=|x|ne x$$for $xin Bbb R$ for example $$sqrt{(-1)^2}=sqrt{1^2}=|-1|=|1|=1$$
            $endgroup$
            – Mostafa Ayaz
            Jan 9 at 19:50












            $begingroup$
            So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
            $endgroup$
            – Ben Dreslinski
            Jan 9 at 21:35




            $begingroup$
            So, just to make sure my algebra is right after re-doing this, the denominator is: $$sqrt{4cos^2theta}^3$$ $$(2|costheta|)^3$$ $$(2|costheta|)(2|costheta|)(2|costheta|)$$ So $(|costheta|)(|costheta|)=cos^2theta$ because the squared part makes the absolute values negligent, leaving: $$8cos^2theta|costheta|$$ And the $costheta$ up top makes: $$8costheta|costheta|$$ And that's how you got your denominator in your final answer in terms of $theta$?
            $endgroup$
            – Ben Dreslinski
            Jan 9 at 21:35












            $begingroup$
            Yes you got it. That's accurate...
            $endgroup$
            – Mostafa Ayaz
            Jan 10 at 10:11






            $begingroup$
            Yes you got it. That's accurate...
            $endgroup$
            – Mostafa Ayaz
            Jan 10 at 10:11













            0












            $begingroup$

            Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.



            First 4 steps:




            • Change $x=t+frac12$
              $$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
              frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$


            • $$intfrac{t}{(1-t^2)^{3/2}}dt=
              frac{1}{sqrt{1-{{t}^{2}}}}$$

            • $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$

            • $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.



              First 4 steps:




              • Change $x=t+frac12$
                $$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
                frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$


              • $$intfrac{t}{(1-t^2)^{3/2}}dt=
                frac{1}{sqrt{1-{{t}^{2}}}}$$

              • $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$

              • $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.



                First 4 steps:




                • Change $x=t+frac12$
                  $$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
                  frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$


                • $$intfrac{t}{(1-t^2)^{3/2}}dt=
                  frac{1}{sqrt{1-{{t}^{2}}}}$$

                • $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$

                • $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$






                share|cite|improve this answer









                $endgroup$



                Find $I=intfrac{x^2}{(3+4x-4x^2)^{3/2}}dx$.



                First 4 steps:




                • Change $x=t+frac12$
                  $$I=intfrac{t^2+t+frac14}{8(1-t^2)^{3/2}}dt\=frac18intfrac{t^2}{(1-t^2)^{3/2}}dt+
                  frac18intfrac{t}{(1-t^2)^{3/2}}dt+frac1{32}intfrac{1}{(1-t^2)^{3/2}}dt$$


                • $$intfrac{t}{(1-t^2)^{3/2}}dt=
                  frac{1}{sqrt{1-{{t}^{2}}}}$$

                • $$intfrac{t^2}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}-arcsin(t)$$

                • $$intfrac{1}{(1-t^2)^{3/2}}dt=frac{t}{sqrt{1-{{t}^{2}}}}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 9 at 21:24









                Aleksas DomarkasAleksas Domarkas

                1,1946




                1,1946






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067187%2fnot-getting-the-right-answer-with-alternate-completing-the-square-method-on-in%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]