$mathbb{E}[f(X_1+X_2+cdots+X_{n}) mid sigma(X_1,X_2,cdots,X_{n-1})] =mathbb{E}[f(X_1+X_2+cdots+X_{n}) mid...












0












$begingroup$


$f$ is a bounded measurable functions and the $X_i$'s are independent



to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$



$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$



clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$



then the equality holds



and that inclusion is actually correct for the following argument,



elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$



is this right ? can someone correct any falseness I said ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 9:03










  • $begingroup$
    Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
    $endgroup$
    – Did
    Jan 20 at 21:58


















0












$begingroup$


$f$ is a bounded measurable functions and the $X_i$'s are independent



to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$



$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$



clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$



then the equality holds



and that inclusion is actually correct for the following argument,



elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$



is this right ? can someone correct any falseness I said ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 9:03










  • $begingroup$
    Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
    $endgroup$
    – Did
    Jan 20 at 21:58
















0












0








0





$begingroup$


$f$ is a bounded measurable functions and the $X_i$'s are independent



to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$



$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$



clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$



then the equality holds



and that inclusion is actually correct for the following argument,



elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$



is this right ? can someone correct any falseness I said ?










share|cite|improve this question









$endgroup$




$f$ is a bounded measurable functions and the $X_i$'s are independent



to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$



$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$



clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$



then the equality holds



and that inclusion is actually correct for the following argument,



elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$



is this right ? can someone correct any falseness I said ?







probability-theory measure-theory conditional-expectation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 9 at 8:56









rapidracimrapidracim

1,6811319




1,6811319












  • $begingroup$
    It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 9:03










  • $begingroup$
    Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
    $endgroup$
    – Did
    Jan 20 at 21:58




















  • $begingroup$
    It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 9:03










  • $begingroup$
    Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
    $endgroup$
    – Did
    Jan 20 at 21:58


















$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03




$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03












$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58






$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067238%2fmathbbefx-1x-2-cdotsx-n-mid-sigmax-1-x-2-cdots-x-n-1-mathb%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067238%2fmathbbefx-1x-2-cdotsx-n-mid-sigmax-1-x-2-cdots-x-n-1-mathb%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]