$mathbb{E}[f(X_1+X_2+cdots+X_{n}) mid sigma(X_1,X_2,cdots,X_{n-1})] =mathbb{E}[f(X_1+X_2+cdots+X_{n}) mid...
$begingroup$
$f$ is a bounded measurable functions and the $X_i$'s are independent
to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$
$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$
clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$
then the equality holds
and that inclusion is actually correct for the following argument,
elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$
is this right ? can someone correct any falseness I said ?
probability-theory measure-theory conditional-expectation
$endgroup$
add a comment |
$begingroup$
$f$ is a bounded measurable functions and the $X_i$'s are independent
to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$
$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$
clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$
then the equality holds
and that inclusion is actually correct for the following argument,
elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$
is this right ? can someone correct any falseness I said ?
probability-theory measure-theory conditional-expectation
$endgroup$
$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03
$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58
add a comment |
$begingroup$
$f$ is a bounded measurable functions and the $X_i$'s are independent
to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$
$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$
clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$
then the equality holds
and that inclusion is actually correct for the following argument,
elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$
is this right ? can someone correct any falseness I said ?
probability-theory measure-theory conditional-expectation
$endgroup$
$f$ is a bounded measurable functions and the $X_i$'s are independent
to prove the above one must show the following equality : $$I = J$$
where :
$$I=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} mathbb{E}[f(X_1+X_2+cdots+X_n) mid X_1+X_2+cdots+X_{n-1} ]d mathbb{P}$$
$$J=int_{A in sigma(X_1,X_2,cdots,X_{n-1})} f(X_1+X_2+cdots+X_n) d mathbb{P}$$
clearly if $sigma(X_1,X_2,cdots,X_{n-1}) subsetsigma(X_1+X_2+ cdots+X_{n-1})$
then the equality holds
and that inclusion is actually correct for the following argument,
elements of $sigma(X_1,X_2,cdots,X_{n-1})$ are all intersections of elements of $sigma(X_1+X_2+ cdots+X_{n-1})$
is this right ? can someone correct any falseness I said ?
probability-theory measure-theory conditional-expectation
probability-theory measure-theory conditional-expectation
asked Jan 9 at 8:56
rapidracimrapidracim
1,6811319
1,6811319
$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03
$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58
add a comment |
$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03
$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58
$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03
$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03
$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58
$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067238%2fmathbbefx-1x-2-cdotsx-n-mid-sigmax-1-x-2-cdots-x-n-1-mathb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067238%2fmathbbefx-1x-2-cdotsx-n-mid-sigmax-1-x-2-cdots-x-n-1-mathb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It is not true that $sigma(X_1,X_2,...,X_n) subset sigma(X_1+X_2+...+X_n)$ except in some trivial cases.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 9:03
$begingroup$
Moer generally, if $X$ is independent of $mathcal G$ and $Y$ is $mathcal G$-measurable, then $E(f(X+Y)midmathcal G)=g(Y)$ where $g(y)=E(f(X+y))$, hence $E(f(X+Y)midmathcal G)=E(f(X+Y)mid Y)$.
$endgroup$
– Did
Jan 20 at 21:58