negative/inverse triangular inequality, asymptotic analysis
$begingroup$
For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$
How do we get the second to last inequality?
Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?
inequality asymptotics
$endgroup$
add a comment |
$begingroup$
For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$
How do we get the second to last inequality?
Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?
inequality asymptotics
$endgroup$
add a comment |
$begingroup$
For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$
How do we get the second to last inequality?
Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?
inequality asymptotics
$endgroup$
For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$
How do we get the second to last inequality?
Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?
inequality asymptotics
inequality asymptotics
edited Jan 9 at 8:37
John Cataldo
asked Jan 9 at 8:29
John CataldoJohn Cataldo
1,1841316
1,1841316
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.
$endgroup$
add a comment |
$begingroup$
For $|z| ge r > 0$:
$$
|z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
$$
For $r > 0$ sufficiently large the second factor is $ge frac 12$.
$endgroup$
add a comment |
$begingroup$
Concerning your second question about replacing $2$ by $alpha > 1$:
Yes, the claim is still true for sufficiently large $r$.
Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
begin{eqnarray*}
|z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
&Leftrightarrow & \
beta|z|^2 -4|z| &ge & 3\
&Leftrightarrow & \
|z|left( beta|z| -4right) &ge & 3\
end{eqnarray*}
The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067222%2fnegative-inverse-triangular-inequality-asymptotic-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.
$endgroup$
add a comment |
$begingroup$
Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.
$endgroup$
add a comment |
$begingroup$
Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.
$endgroup$
Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.
answered Jan 9 at 8:35
RptoughsRptoughs
62
62
add a comment |
add a comment |
$begingroup$
For $|z| ge r > 0$:
$$
|z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
$$
For $r > 0$ sufficiently large the second factor is $ge frac 12$.
$endgroup$
add a comment |
$begingroup$
For $|z| ge r > 0$:
$$
|z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
$$
For $r > 0$ sufficiently large the second factor is $ge frac 12$.
$endgroup$
add a comment |
$begingroup$
For $|z| ge r > 0$:
$$
|z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
$$
For $r > 0$ sufficiently large the second factor is $ge frac 12$.
$endgroup$
For $|z| ge r > 0$:
$$
|z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
$$
For $r > 0$ sufficiently large the second factor is $ge frac 12$.
edited Jan 9 at 8:47
answered Jan 9 at 8:35
Martin RMartin R
28k33355
28k33355
add a comment |
add a comment |
$begingroup$
Concerning your second question about replacing $2$ by $alpha > 1$:
Yes, the claim is still true for sufficiently large $r$.
Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
begin{eqnarray*}
|z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
&Leftrightarrow & \
beta|z|^2 -4|z| &ge & 3\
&Leftrightarrow & \
|z|left( beta|z| -4right) &ge & 3\
end{eqnarray*}
The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.
$endgroup$
add a comment |
$begingroup$
Concerning your second question about replacing $2$ by $alpha > 1$:
Yes, the claim is still true for sufficiently large $r$.
Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
begin{eqnarray*}
|z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
&Leftrightarrow & \
beta|z|^2 -4|z| &ge & 3\
&Leftrightarrow & \
|z|left( beta|z| -4right) &ge & 3\
end{eqnarray*}
The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.
$endgroup$
add a comment |
$begingroup$
Concerning your second question about replacing $2$ by $alpha > 1$:
Yes, the claim is still true for sufficiently large $r$.
Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
begin{eqnarray*}
|z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
&Leftrightarrow & \
beta|z|^2 -4|z| &ge & 3\
&Leftrightarrow & \
|z|left( beta|z| -4right) &ge & 3\
end{eqnarray*}
The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.
$endgroup$
Concerning your second question about replacing $2$ by $alpha > 1$:
Yes, the claim is still true for sufficiently large $r$.
Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
begin{eqnarray*}
|z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
&Leftrightarrow & \
beta|z|^2 -4|z| &ge & 3\
&Leftrightarrow & \
|z|left( beta|z| -4right) &ge & 3\
end{eqnarray*}
The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.
edited Jan 9 at 9:45
answered Jan 9 at 9:39
trancelocationtrancelocation
10.8k1723
10.8k1723
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067222%2fnegative-inverse-triangular-inequality-asymptotic-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown