negative/inverse triangular inequality, asymptotic analysis












0












$begingroup$


For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$



How do we get the second to last inequality?



Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$



    How do we get the second to last inequality?



    Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$



      How do we get the second to last inequality?



      Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?










      share|cite|improve this question











      $endgroup$




      For $r$ sufficiently large and $|z|ge r$ we have $$|z^2-4z+3|ge||z|^2-|4z-3||ge|z|^2-4|z|-3gefrac{|z|^2}{2}ge{r^2over2}$$



      How do we get the second to last inequality?



      Is it still true if we replace $2$ by any $alphain Bbb R_{>1}$?







      inequality asymptotics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 9 at 8:37







      John Cataldo

















      asked Jan 9 at 8:29









      John CataldoJohn Cataldo

      1,1841316




      1,1841316






















          3 Answers
          3






          active

          oldest

          votes


















          0












          $begingroup$

          Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            For $|z| ge r > 0$:
            $$
            |z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
            ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
            $$

            For $r > 0$ sufficiently large the second factor is $ge frac 12$.






            share|cite|improve this answer











            $endgroup$





















              0












              $begingroup$

              Concerning your second question about replacing $2$ by $alpha > 1$:



              Yes, the claim is still true for sufficiently large $r$.



              Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
              begin{eqnarray*}
              |z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
              &Leftrightarrow & \
              beta|z|^2 -4|z| &ge & 3\
              &Leftrightarrow & \
              |z|left( beta|z| -4right) &ge & 3\
              end{eqnarray*}

              The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.






              share|cite|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067222%2fnegative-inverse-triangular-inequality-asymptotic-analysis%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                0












                $begingroup$

                Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.






                    share|cite|improve this answer









                    $endgroup$



                    Parabolas grow faster than lines. That is, $1/2x^2>ax+b$ for $x$ large enough for all $a,b$. So if $|z|$ is sufficiently large, $1/2|z|^2>4|z|+3$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 9 at 8:35









                    RptoughsRptoughs

                    62




                    62























                        0












                        $begingroup$

                        For $|z| ge r > 0$:
                        $$
                        |z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
                        ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
                        $$

                        For $r > 0$ sufficiently large the second factor is $ge frac 12$.






                        share|cite|improve this answer











                        $endgroup$


















                          0












                          $begingroup$

                          For $|z| ge r > 0$:
                          $$
                          |z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
                          ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
                          $$

                          For $r > 0$ sufficiently large the second factor is $ge frac 12$.






                          share|cite|improve this answer











                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            For $|z| ge r > 0$:
                            $$
                            |z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
                            ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
                            $$

                            For $r > 0$ sufficiently large the second factor is $ge frac 12$.






                            share|cite|improve this answer











                            $endgroup$



                            For $|z| ge r > 0$:
                            $$
                            |z|^2-4|z|-3 = |z|^2 left( 1 - frac{4}{|z|} -frac{3}{|z|^2} right)
                            ge |z|^2 left( 1 - frac{4}{r} -frac{3}{r^2} right)
                            $$

                            For $r > 0$ sufficiently large the second factor is $ge frac 12$.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 9 at 8:47

























                            answered Jan 9 at 8:35









                            Martin RMartin R

                            28k33355




                            28k33355























                                0












                                $begingroup$

                                Concerning your second question about replacing $2$ by $alpha > 1$:



                                Yes, the claim is still true for sufficiently large $r$.



                                Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
                                begin{eqnarray*}
                                |z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
                                &Leftrightarrow & \
                                beta|z|^2 -4|z| &ge & 3\
                                &Leftrightarrow & \
                                |z|left( beta|z| -4right) &ge & 3\
                                end{eqnarray*}

                                The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.






                                share|cite|improve this answer











                                $endgroup$


















                                  0












                                  $begingroup$

                                  Concerning your second question about replacing $2$ by $alpha > 1$:



                                  Yes, the claim is still true for sufficiently large $r$.



                                  Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
                                  begin{eqnarray*}
                                  |z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
                                  &Leftrightarrow & \
                                  beta|z|^2 -4|z| &ge & 3\
                                  &Leftrightarrow & \
                                  |z|left( beta|z| -4right) &ge & 3\
                                  end{eqnarray*}

                                  The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.






                                  share|cite|improve this answer











                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Concerning your second question about replacing $2$ by $alpha > 1$:



                                    Yes, the claim is still true for sufficiently large $r$.



                                    Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
                                    begin{eqnarray*}
                                    |z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
                                    &Leftrightarrow & \
                                    beta|z|^2 -4|z| &ge & 3\
                                    &Leftrightarrow & \
                                    |z|left( beta|z| -4right) &ge & 3\
                                    end{eqnarray*}

                                    The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.






                                    share|cite|improve this answer











                                    $endgroup$



                                    Concerning your second question about replacing $2$ by $alpha > 1$:



                                    Yes, the claim is still true for sufficiently large $r$.



                                    Let $beta = 1-frac{1}{alpha}$, hence $beta in (0,1)$:
                                    begin{eqnarray*}
                                    |z|^2-4|z|-3 &ge & frac{|z|^2}{alpha }\
                                    &Leftrightarrow & \
                                    beta|z|^2 -4|z| &ge & 3\
                                    &Leftrightarrow & \
                                    |z|left( beta|z| -4right) &ge & 3\
                                    end{eqnarray*}

                                    The last inequality is surely satisfied for $boxed{|z| > maxleft( frac{7}{beta},3 right)}$.







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Jan 9 at 9:45

























                                    answered Jan 9 at 9:39









                                    trancelocationtrancelocation

                                    10.8k1723




                                    10.8k1723






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067222%2fnegative-inverse-triangular-inequality-asymptotic-analysis%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        'app-layout' is not a known element: how to share Component with different Modules

                                        android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                        WPF add header to Image with URL pettitions [duplicate]