Find the distribution of $Z=X+Y$ where both $X$ and $Y$ are exponentially distributed.












1












$begingroup$


I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that



$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$



Thus,



$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$



I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.



Is there any way to proceeed here?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
    $endgroup$
    – Dante Grevino
    Jan 9 at 23:10










  • $begingroup$
    There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
    $endgroup$
    – Math1000
    Jan 9 at 23:25










  • $begingroup$
    @DanteGrevino Yes, independent but with different parameters.
    $endgroup$
    – Parseval
    Jan 9 at 23:30










  • $begingroup$
    @Math1000 - Thanks, good to know, then I don't need to try this anymore.
    $endgroup$
    – Parseval
    Jan 9 at 23:31
















1












$begingroup$


I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that



$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$



Thus,



$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$



I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.



Is there any way to proceeed here?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
    $endgroup$
    – Dante Grevino
    Jan 9 at 23:10










  • $begingroup$
    There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
    $endgroup$
    – Math1000
    Jan 9 at 23:25










  • $begingroup$
    @DanteGrevino Yes, independent but with different parameters.
    $endgroup$
    – Parseval
    Jan 9 at 23:30










  • $begingroup$
    @Math1000 - Thanks, good to know, then I don't need to try this anymore.
    $endgroup$
    – Parseval
    Jan 9 at 23:31














1












1








1





$begingroup$


I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that



$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$



Thus,



$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$



I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.



Is there any way to proceeed here?










share|cite|improve this question









$endgroup$




I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that



$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$



Thus,



$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$



I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.



Is there any way to proceeed here?







probability probability-distributions generating-functions moment-generating-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 9 at 22:30









ParsevalParseval

2,8261718




2,8261718












  • $begingroup$
    Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
    $endgroup$
    – Dante Grevino
    Jan 9 at 23:10










  • $begingroup$
    There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
    $endgroup$
    – Math1000
    Jan 9 at 23:25










  • $begingroup$
    @DanteGrevino Yes, independent but with different parameters.
    $endgroup$
    – Parseval
    Jan 9 at 23:30










  • $begingroup$
    @Math1000 - Thanks, good to know, then I don't need to try this anymore.
    $endgroup$
    – Parseval
    Jan 9 at 23:31


















  • $begingroup$
    Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
    $endgroup$
    – Dante Grevino
    Jan 9 at 23:10










  • $begingroup$
    There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
    $endgroup$
    – Math1000
    Jan 9 at 23:25










  • $begingroup$
    @DanteGrevino Yes, independent but with different parameters.
    $endgroup$
    – Parseval
    Jan 9 at 23:30










  • $begingroup$
    @Math1000 - Thanks, good to know, then I don't need to try this anymore.
    $endgroup$
    – Parseval
    Jan 9 at 23:31
















$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10




$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10












$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25




$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25












$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30




$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30












$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31




$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31










1 Answer
1






active

oldest

votes


















0












$begingroup$

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
{expo{pars{mu - lambda}z/pars{lambdamu}} -
1 over pars{mu - lambda}/pars{lambdamu}}dd y =
bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
end{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068024%2ffind-the-distribution-of-z-xy-where-both-x-and-y-are-exponentially-distri%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    &bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
    braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
    \[5mm] = &
    bracks{z > 0}{expo{-z/lambda} over lambdamu}
    int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
    \[5mm] = &
    bracks{z > 0}{expo{-z/lambda} over lambdamu}
    {expo{pars{mu - lambda}z/pars{lambdamu}} -
    1 over pars{mu - lambda}/pars{lambdamu}}dd y =
    bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
    end{align}






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$

      begin{align}
      &bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
      braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
      \[5mm] = &
      bracks{z > 0}{expo{-z/lambda} over lambdamu}
      int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
      \[5mm] = &
      bracks{z > 0}{expo{-z/lambda} over lambdamu}
      {expo{pars{mu - lambda}z/pars{lambdamu}} -
      1 over pars{mu - lambda}/pars{lambdamu}}dd y =
      bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
      end{align}






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$

        begin{align}
        &bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
        braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
        \[5mm] = &
        bracks{z > 0}{expo{-z/lambda} over lambdamu}
        int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
        \[5mm] = &
        bracks{z > 0}{expo{-z/lambda} over lambdamu}
        {expo{pars{mu - lambda}z/pars{lambdamu}} -
        1 over pars{mu - lambda}/pars{lambdamu}}dd y =
        bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
        end{align}






        share|cite|improve this answer









        $endgroup$



        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$

        begin{align}
        &bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
        braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
        \[5mm] = &
        bracks{z > 0}{expo{-z/lambda} over lambdamu}
        int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
        \[5mm] = &
        bracks{z > 0}{expo{-z/lambda} over lambdamu}
        {expo{pars{mu - lambda}z/pars{lambdamu}} -
        1 over pars{mu - lambda}/pars{lambdamu}}dd y =
        bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 10 at 2:17









        Felix MarinFelix Marin

        67.8k7107142




        67.8k7107142






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068024%2ffind-the-distribution-of-z-xy-where-both-x-and-y-are-exponentially-distri%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith