Find the distribution of $Z=X+Y$ where both $X$ and $Y$ are exponentially distributed.
$begingroup$
I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that
$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$
Thus,
$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$
I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.
Is there any way to proceeed here?
probability probability-distributions generating-functions moment-generating-functions
$endgroup$
add a comment |
$begingroup$
I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that
$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$
Thus,
$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$
I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.
Is there any way to proceeed here?
probability probability-distributions generating-functions moment-generating-functions
$endgroup$
$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10
$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25
$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30
$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31
add a comment |
$begingroup$
I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that
$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$
Thus,
$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$
I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.
Is there any way to proceeed here?
probability probability-distributions generating-functions moment-generating-functions
$endgroup$
I have a problem where, in order to solve it, I need to find the distribution of $Z$. Say that $Xsimtext{exp}(lambda)$ and $Ysimtext{exp}(mu)$. I don't want to use the convolution formula but instead the mgf's. I have that
$$M_X(t)=frac{lambda}{lambda-t},quad quad M_Y(t)=frac{mu}{mu-t}.$$
Thus,
$$M_Z(t)=M_{X+Y}(t)=M_X(t)M_Y(t)=frac{lambdamu}{lambdamu-lambda t-mu t+t^2}.$$
I'm trying to find what distribution this is the mgf for. If $X$ and $Y$ were I.I.D, then it would just be an mgf for the gamma distribution. But this is not the case since I can't rewrite it in the correct form.
Is there any way to proceeed here?
probability probability-distributions generating-functions moment-generating-functions
probability probability-distributions generating-functions moment-generating-functions
asked Jan 9 at 22:30
ParsevalParseval
2,8261718
2,8261718
$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10
$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25
$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30
$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31
add a comment |
$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10
$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25
$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30
$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31
$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10
$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10
$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25
$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25
$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30
$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30
$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31
$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
{expo{pars{mu - lambda}z/pars{lambdamu}} -
1 over pars{mu - lambda}/pars{lambdamu}}dd y =
bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068024%2ffind-the-distribution-of-z-xy-where-both-x-and-y-are-exponentially-distri%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
{expo{pars{mu - lambda}z/pars{lambdamu}} -
1 over pars{mu - lambda}/pars{lambdamu}}dd y =
bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
{expo{pars{mu - lambda}z/pars{lambdamu}} -
1 over pars{mu - lambda}/pars{lambdamu}}dd y =
bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
{expo{pars{mu - lambda}z/pars{lambdamu}} -
1 over pars{mu - lambda}/pars{lambdamu}}dd y =
bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{expo{-y/mu} over mu}
braces{bracks{z - y > 0}{expo{-pars{z - y}/lambda} over lambda}}dd y}
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
int_{0}^{z}exppars{{mu - lambda over lambdamu},y}dd y
\[5mm] = &
bracks{z > 0}{expo{-z/lambda} over lambdamu}
{expo{pars{mu - lambda}z/pars{lambdamu}} -
1 over pars{mu - lambda}/pars{lambdamu}}dd y =
bbx{bracks{z > 0}{expo{-z/mu} - expo{-z/lambda} over mu - lambda}}
end{align}
answered Jan 10 at 2:17


Felix MarinFelix Marin
67.8k7107142
67.8k7107142
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068024%2ffind-the-distribution-of-z-xy-where-both-x-and-y-are-exponentially-distri%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are you assuming that $X$ and $Y$ are independent when you write $M_{X+Y}=M_XM_Y$?
$endgroup$
– Dante Grevino
Jan 9 at 23:10
$begingroup$
There isn't any particular name for this distribution, so far as I know. So the best you can do is present the MGF/CF, or compute the density directly via convolution.
$endgroup$
– Math1000
Jan 9 at 23:25
$begingroup$
@DanteGrevino Yes, independent but with different parameters.
$endgroup$
– Parseval
Jan 9 at 23:30
$begingroup$
@Math1000 - Thanks, good to know, then I don't need to try this anymore.
$endgroup$
– Parseval
Jan 9 at 23:31