How can I get $Acos(alpha t)+sin(alpha t)$ from $A'e^{ialpha t}+B'e^{-ialpha t}$ (solution of ODE with...
$begingroup$
Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$
But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$
I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$
but I still have complex coefficient... may be there is an other way ? Because I can't conclude.
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$
But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$
I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$
but I still have complex coefficient... may be there is an other way ? Because I can't conclude.
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$
But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$
I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$
but I still have complex coefficient... may be there is an other way ? Because I can't conclude.
ordinary-differential-equations
$endgroup$
Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$
But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$
I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$
but I still have complex coefficient... may be there is an other way ? Because I can't conclude.
ordinary-differential-equations
ordinary-differential-equations
asked Jan 14 at 9:12
user623855user623855
1507
1507
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Maybe you want to use different symbols for the coefficients,
begin{eqnarray}
A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
&=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
&=& A'' cos alpha t + B''sin alpha t
end{eqnarray}
The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.
$endgroup$
$begingroup$
You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
$endgroup$
– user623855
Jan 14 at 11:00
$begingroup$
@user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
$endgroup$
– caverac
Jan 14 at 11:13
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073012%2fhow-can-i-get-a-cos-alpha-t-sin-alpha-t-from-aei-alpha-tbe-i-alp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Maybe you want to use different symbols for the coefficients,
begin{eqnarray}
A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
&=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
&=& A'' cos alpha t + B''sin alpha t
end{eqnarray}
The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.
$endgroup$
$begingroup$
You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
$endgroup$
– user623855
Jan 14 at 11:00
$begingroup$
@user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
$endgroup$
– caverac
Jan 14 at 11:13
add a comment |
$begingroup$
Maybe you want to use different symbols for the coefficients,
begin{eqnarray}
A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
&=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
&=& A'' cos alpha t + B''sin alpha t
end{eqnarray}
The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.
$endgroup$
$begingroup$
You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
$endgroup$
– user623855
Jan 14 at 11:00
$begingroup$
@user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
$endgroup$
– caverac
Jan 14 at 11:13
add a comment |
$begingroup$
Maybe you want to use different symbols for the coefficients,
begin{eqnarray}
A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
&=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
&=& A'' cos alpha t + B''sin alpha t
end{eqnarray}
The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.
$endgroup$
Maybe you want to use different symbols for the coefficients,
begin{eqnarray}
A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
&=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
&=& A'' cos alpha t + B''sin alpha t
end{eqnarray}
The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.
answered Jan 14 at 9:34
caveraccaverac
14.6k31130
14.6k31130
$begingroup$
You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
$endgroup$
– user623855
Jan 14 at 11:00
$begingroup$
@user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
$endgroup$
– caverac
Jan 14 at 11:13
add a comment |
$begingroup$
You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
$endgroup$
– user623855
Jan 14 at 11:00
$begingroup$
@user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
$endgroup$
– caverac
Jan 14 at 11:13
$begingroup$
You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
$endgroup$
– user623855
Jan 14 at 11:00
$begingroup$
You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
$endgroup$
– user623855
Jan 14 at 11:00
$begingroup$
@user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
$endgroup$
– caverac
Jan 14 at 11:13
$begingroup$
@user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
$endgroup$
– caverac
Jan 14 at 11:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073012%2fhow-can-i-get-a-cos-alpha-t-sin-alpha-t-from-aei-alpha-tbe-i-alp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown