How can I get $Acos(alpha t)+sin(alpha t)$ from $A'e^{ialpha t}+B'e^{-ialpha t}$ (solution of ODE with...












1












$begingroup$


Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$



But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$



I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$



but I still have complex coefficient... may be there is an other way ? Because I can't conclude.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$



    But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
    form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$



    I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$



    but I still have complex coefficient... may be there is an other way ? Because I can't conclude.










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$



      But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
      form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$



      I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$



      but I still have complex coefficient... may be there is an other way ? Because I can't conclude.










      share|cite|improve this question









      $endgroup$




      Let for example the ODE $y''(t)+alpha ^2y(t)=0$. The caracteristic equation is $r^2+t^2=0$ and thus $r=pm it$. I know that the general solution can be written as $$Acos(alpha t)+Bsin(alpha t).$$



      But since $e^{pm alpha t}$ solve the ODE, $$y(t)=Ae^{it}+Be^{-it}$$ solve the equation as well. So I should be able to find $$A'cos(alpha t)+B'sin(alpha t),$$
      form $$A'e^{ialpha t}+B'e^{-ialpha t} ?$$



      I tried as follow : $$A'e^{ialpha t}+B'e^{-ialpha t}=frac{A'}{sqrt{A'^2+B'^2}} e^{ialpha t}+frac{B'}{sqrt{A'^2+B'^2}}e^{-ialpha t}=cos(varphi )e^{ialpha t}+sin(varphi )e^{-ialpha t}=(sin(varphi )+sin(varphi ))cos(alpha t)+i(cos(varphi)-sin(varphi ) )sin(alpha t),$$



      but I still have complex coefficient... may be there is an other way ? Because I can't conclude.







      ordinary-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 14 at 9:12









      user623855user623855

      1507




      1507






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Maybe you want to use different symbols for the coefficients,



          begin{eqnarray}
          A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
          &=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
          &=& A'' cos alpha t + B''sin alpha t
          end{eqnarray}



          The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
            $endgroup$
            – user623855
            Jan 14 at 11:00










          • $begingroup$
            @user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
            $endgroup$
            – caverac
            Jan 14 at 11:13













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073012%2fhow-can-i-get-a-cos-alpha-t-sin-alpha-t-from-aei-alpha-tbe-i-alp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Maybe you want to use different symbols for the coefficients,



          begin{eqnarray}
          A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
          &=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
          &=& A'' cos alpha t + B''sin alpha t
          end{eqnarray}



          The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
            $endgroup$
            – user623855
            Jan 14 at 11:00










          • $begingroup$
            @user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
            $endgroup$
            – caverac
            Jan 14 at 11:13


















          2












          $begingroup$

          Maybe you want to use different symbols for the coefficients,



          begin{eqnarray}
          A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
          &=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
          &=& A'' cos alpha t + B''sin alpha t
          end{eqnarray}



          The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
            $endgroup$
            – user623855
            Jan 14 at 11:00










          • $begingroup$
            @user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
            $endgroup$
            – caverac
            Jan 14 at 11:13
















          2












          2








          2





          $begingroup$

          Maybe you want to use different symbols for the coefficients,



          begin{eqnarray}
          A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
          &=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
          &=& A'' cos alpha t + B''sin alpha t
          end{eqnarray}



          The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.






          share|cite|improve this answer









          $endgroup$



          Maybe you want to use different symbols for the coefficients,



          begin{eqnarray}
          A' e^{ialpha t} + B' e^{-ialpha t} &=& A' left[cos alpha t + i sin alpha t right] + B' left[cos alpha t - i sin alpha t right] \
          &=& underbrace{(A' + B')}_{A''}cos alpha t + underbrace{i(A' - B')}_{B''}sin alpha t \
          &=& A'' cos alpha t + B''sin alpha t
          end{eqnarray}



          The thing here is that $A'$ or $B'$ maybe complex themselves, so $A'$ and $B'$ will be real.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 14 at 9:34









          caveraccaverac

          14.6k31130




          14.6k31130












          • $begingroup$
            You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
            $endgroup$
            – user623855
            Jan 14 at 11:00










          • $begingroup$
            @user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
            $endgroup$
            – caverac
            Jan 14 at 11:13




















          • $begingroup$
            You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
            $endgroup$
            – user623855
            Jan 14 at 11:00










          • $begingroup$
            @user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
            $endgroup$
            – caverac
            Jan 14 at 11:13


















          $begingroup$
          You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
          $endgroup$
          – user623855
          Jan 14 at 11:00




          $begingroup$
          You mean $A''$ and $B''$ will be real no ? How can we prove the fact that $A''$ and $B''$ will be real ?
          $endgroup$
          – user623855
          Jan 14 at 11:00












          $begingroup$
          @user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
          $endgroup$
          – caverac
          Jan 14 at 11:13






          $begingroup$
          @user623855 Yes I mean $A''$ and $B''$, sorry, typo. If you require the coefficients $A''$ and $B''$ to be real you work it backwards: $Im A' = - Im B'$ and $Re A' = Re B' $, these are the conditions $A', B'$ must follow so that both $A''$ and $B''$ are real
          $endgroup$
          – caverac
          Jan 14 at 11:13




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073012%2fhow-can-i-get-a-cos-alpha-t-sin-alpha-t-from-aei-alpha-tbe-i-alp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith