Proof of first Fundamental theorem of calculus
$begingroup$
Can you please, check if my proof is correct?
Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
MY PROOF: Credits to Aweygan for the correction
Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
real-analysis calculus analysis proof-verification riemann-integration
$endgroup$
|
show 6 more comments
$begingroup$
Can you please, check if my proof is correct?
Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
MY PROOF: Credits to Aweygan for the correction
Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
real-analysis calculus analysis proof-verification riemann-integration
$endgroup$
$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33
$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47
$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49
$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55
$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56
|
show 6 more comments
$begingroup$
Can you please, check if my proof is correct?
Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
MY PROOF: Credits to Aweygan for the correction
Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
real-analysis calculus analysis proof-verification riemann-integration
$endgroup$
Can you please, check if my proof is correct?
Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
MY PROOF: Credits to Aweygan for the correction
Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$
real-analysis calculus analysis proof-verification riemann-integration
real-analysis calculus analysis proof-verification riemann-integration
edited Jan 14 at 15:15
Omojola Micheal
asked Jan 14 at 13:26
Omojola MichealOmojola Micheal
1,875324
1,875324
$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33
$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47
$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49
$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55
$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56
|
show 6 more comments
$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33
$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47
$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49
$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55
$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56
$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33
$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33
$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47
$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47
$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49
$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49
$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55
$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55
$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56
$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:
begin{align}
left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
\&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
&=epsilon.
end{align}
$endgroup$
$begingroup$
Thanks a lot for the explanation (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 15:07
$begingroup$
You're welcome. Glad to help!
$endgroup$
– Aweygan
Jan 14 at 15:07
add a comment |
$begingroup$
You can also directly use the mean value theorem for integrals:
$$
lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
$$
where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073225%2fproof-of-first-fundamental-theorem-of-calculus%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:
begin{align}
left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
\&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
&=epsilon.
end{align}
$endgroup$
$begingroup$
Thanks a lot for the explanation (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 15:07
$begingroup$
You're welcome. Glad to help!
$endgroup$
– Aweygan
Jan 14 at 15:07
add a comment |
$begingroup$
It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:
begin{align}
left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
\&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
&=epsilon.
end{align}
$endgroup$
$begingroup$
Thanks a lot for the explanation (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 15:07
$begingroup$
You're welcome. Glad to help!
$endgroup$
– Aweygan
Jan 14 at 15:07
add a comment |
$begingroup$
It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:
begin{align}
left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
\&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
&=epsilon.
end{align}
$endgroup$
It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:
begin{align}
left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
\&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
&=epsilon.
end{align}
edited Jan 14 at 15:08
answered Jan 14 at 15:05
AweyganAweygan
14.2k21441
14.2k21441
$begingroup$
Thanks a lot for the explanation (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 15:07
$begingroup$
You're welcome. Glad to help!
$endgroup$
– Aweygan
Jan 14 at 15:07
add a comment |
$begingroup$
Thanks a lot for the explanation (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 15:07
$begingroup$
You're welcome. Glad to help!
$endgroup$
– Aweygan
Jan 14 at 15:07
$begingroup$
Thanks a lot for the explanation (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 15:07
$begingroup$
Thanks a lot for the explanation (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 15:07
$begingroup$
You're welcome. Glad to help!
$endgroup$
– Aweygan
Jan 14 at 15:07
$begingroup$
You're welcome. Glad to help!
$endgroup$
– Aweygan
Jan 14 at 15:07
add a comment |
$begingroup$
You can also directly use the mean value theorem for integrals:
$$
lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
$$
where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.
$endgroup$
add a comment |
$begingroup$
You can also directly use the mean value theorem for integrals:
$$
lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
$$
where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.
$endgroup$
add a comment |
$begingroup$
You can also directly use the mean value theorem for integrals:
$$
lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
$$
where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.
$endgroup$
You can also directly use the mean value theorem for integrals:
$$
lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
$$
where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.
answered Jan 14 at 15:12
parsiadparsiad
17.7k32353
17.7k32353
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073225%2fproof-of-first-fundamental-theorem-of-calculus%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33
$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47
$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49
$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55
$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56