Proof of first Fundamental theorem of calculus












3












$begingroup$


Can you please, check if my proof is correct?




Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$




MY PROOF: Credits to Aweygan for the correction



Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's not sufficient to prove the limit is $f(x)$ only from one side.
    $endgroup$
    – egreg
    Jan 14 at 13:33










  • $begingroup$
    You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
    $endgroup$
    – Aweygan
    Jan 14 at 13:47












  • $begingroup$
    You're still computing a one-sided limit.
    $endgroup$
    – egreg
    Jan 14 at 13:49










  • $begingroup$
    It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
    $endgroup$
    – Aweygan
    Jan 14 at 13:55












  • $begingroup$
    @Aweygan: I want to rewrite it, now. Some moments, please!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 13:56
















3












$begingroup$


Can you please, check if my proof is correct?




Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$




MY PROOF: Credits to Aweygan for the correction



Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's not sufficient to prove the limit is $f(x)$ only from one side.
    $endgroup$
    – egreg
    Jan 14 at 13:33










  • $begingroup$
    You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
    $endgroup$
    – Aweygan
    Jan 14 at 13:47












  • $begingroup$
    You're still computing a one-sided limit.
    $endgroup$
    – egreg
    Jan 14 at 13:49










  • $begingroup$
    It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
    $endgroup$
    – Aweygan
    Jan 14 at 13:55












  • $begingroup$
    @Aweygan: I want to rewrite it, now. Some moments, please!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 13:56














3












3








3


1



$begingroup$


Can you please, check if my proof is correct?




Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$




MY PROOF: Credits to Aweygan for the correction



Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$










share|cite|improve this question











$endgroup$




Can you please, check if my proof is correct?




Suppose that $f:[a,b]to Bbb{R}$ is continuous and $F(x)=int^{x}_{a}f(t)dt$, then $Fin C^{1}[a,b]$ and
$$dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$




MY PROOF: Credits to Aweygan for the correction



Let $x_0in[a,b]$ and $epsilon>0$ be given. Since $f$ is continuous at $x_0$ then, there exists $delta>0$ such that $|t-x_0|<delta$ implies $$|f(t)-f(x_0)|<epsilon.$$
Thus, $$f(x_0)=dfrac{1}{x-x_0}int^{x}_{x_0}f(x_0)dt,;;text{where};;xneq x_0.$$
For any $xin (a,b),$ with $0<|x-x_0|<delta,$ such that $x_1=min{x,x_0}$ and $x_2=max{x,x_0}$. So, we have
begin{align}left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \&leq dfrac{1}{|x-x_0|}int^{x}_{x_0} left|f(t)-f(x_0) right|dt\&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt\&< dfrac{1}{|x-x_0|}epsilon|x_1-x_2| \&leq dfrac{1}{|x-x_0|}epsilon|x-x_0| =epsilon end{align}
Hence,
$$Fin C^{1}[a,b];;text{and};;dfrac{d}{dx}int^{x}_{a}f(t)dt:=F'(x)=f(x)$$







real-analysis calculus analysis proof-verification riemann-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 15:15







Omojola Micheal

















asked Jan 14 at 13:26









Omojola MichealOmojola Micheal

1,875324




1,875324












  • $begingroup$
    It's not sufficient to prove the limit is $f(x)$ only from one side.
    $endgroup$
    – egreg
    Jan 14 at 13:33










  • $begingroup$
    You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
    $endgroup$
    – Aweygan
    Jan 14 at 13:47












  • $begingroup$
    You're still computing a one-sided limit.
    $endgroup$
    – egreg
    Jan 14 at 13:49










  • $begingroup$
    It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
    $endgroup$
    – Aweygan
    Jan 14 at 13:55












  • $begingroup$
    @Aweygan: I want to rewrite it, now. Some moments, please!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 13:56


















  • $begingroup$
    It's not sufficient to prove the limit is $f(x)$ only from one side.
    $endgroup$
    – egreg
    Jan 14 at 13:33










  • $begingroup$
    You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
    $endgroup$
    – Aweygan
    Jan 14 at 13:47












  • $begingroup$
    You're still computing a one-sided limit.
    $endgroup$
    – egreg
    Jan 14 at 13:49










  • $begingroup$
    It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
    $endgroup$
    – Aweygan
    Jan 14 at 13:55












  • $begingroup$
    @Aweygan: I want to rewrite it, now. Some moments, please!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 13:56
















$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33




$begingroup$
It's not sufficient to prove the limit is $f(x)$ only from one side.
$endgroup$
– egreg
Jan 14 at 13:33












$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47






$begingroup$
You still only have differentiability from the right, you need to show differentiability from the left (i.e. when $-delta<h<0$).
$endgroup$
– Aweygan
Jan 14 at 13:47














$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49




$begingroup$
You're still computing a one-sided limit.
$endgroup$
– egreg
Jan 14 at 13:49












$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55






$begingroup$
It's still not quite correct. I'm all but certain you'll need to handle the two cases $h>0$ and $h<0$ separately, or introduce some new variables to avoid this.
$endgroup$
– Aweygan
Jan 14 at 13:55














$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56




$begingroup$
@Aweygan: I want to rewrite it, now. Some moments, please!
$endgroup$
– Omojola Micheal
Jan 14 at 13:56










2 Answers
2






active

oldest

votes


















2












$begingroup$

It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:



begin{align}
left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
&leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
\&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
&=epsilon.
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks a lot for the explanation (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 15:07










  • $begingroup$
    You're welcome. Glad to help!
    $endgroup$
    – Aweygan
    Jan 14 at 15:07



















2












$begingroup$

You can also directly use the mean value theorem for integrals:
$$
lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
$$

where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073225%2fproof-of-first-fundamental-theorem-of-calculus%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:



    begin{align}
    left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
    &leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
    \&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
    &=epsilon.
    end{align}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Thanks a lot for the explanation (+1)
      $endgroup$
      – Omojola Micheal
      Jan 14 at 15:07










    • $begingroup$
      You're welcome. Glad to help!
      $endgroup$
      – Aweygan
      Jan 14 at 15:07
















    2












    $begingroup$

    It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:



    begin{align}
    left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
    &leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
    \&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
    &=epsilon.
    end{align}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Thanks a lot for the explanation (+1)
      $endgroup$
      – Omojola Micheal
      Jan 14 at 15:07










    • $begingroup$
      You're welcome. Glad to help!
      $endgroup$
      – Aweygan
      Jan 14 at 15:07














    2












    2








    2





    $begingroup$

    It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:



    begin{align}
    left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
    &leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
    \&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
    &=epsilon.
    end{align}






    share|cite|improve this answer











    $endgroup$



    It's essentially correct, but you should either split up the last part of the proof into the cases where $x<x_0$ and $x_0<x$, or write $x_1=min{x,x_0}$, $x_2=max{x,x_0}$ and do the following:



    begin{align}
    left| dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0) right|&= left| dfrac{1}{x-x_0}int^{x}_{x_0}(f(t)-f(x_0))dt right| \
    &leq dfrac{1}{|x-x_0|}int^{x_2}_{x_1} left|f(t)-f(x_0) right|dt
    \&< dfrac{1}{|x-x_0|}epsilon|x-x_0| \
    &=epsilon.
    end{align}







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 14 at 15:08

























    answered Jan 14 at 15:05









    AweyganAweygan

    14.2k21441




    14.2k21441












    • $begingroup$
      Thanks a lot for the explanation (+1)
      $endgroup$
      – Omojola Micheal
      Jan 14 at 15:07










    • $begingroup$
      You're welcome. Glad to help!
      $endgroup$
      – Aweygan
      Jan 14 at 15:07


















    • $begingroup$
      Thanks a lot for the explanation (+1)
      $endgroup$
      – Omojola Micheal
      Jan 14 at 15:07










    • $begingroup$
      You're welcome. Glad to help!
      $endgroup$
      – Aweygan
      Jan 14 at 15:07
















    $begingroup$
    Thanks a lot for the explanation (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 15:07




    $begingroup$
    Thanks a lot for the explanation (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 15:07












    $begingroup$
    You're welcome. Glad to help!
    $endgroup$
    – Aweygan
    Jan 14 at 15:07




    $begingroup$
    You're welcome. Glad to help!
    $endgroup$
    – Aweygan
    Jan 14 at 15:07











    2












    $begingroup$

    You can also directly use the mean value theorem for integrals:
    $$
    lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
    $$

    where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
    By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      You can also directly use the mean value theorem for integrals:
      $$
      lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
      $$

      where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
      By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        You can also directly use the mean value theorem for integrals:
        $$
        lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
        $$

        where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
        By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.






        share|cite|improve this answer









        $endgroup$



        You can also directly use the mean value theorem for integrals:
        $$
        lim_{hdownarrow0}frac{int_{a}^{x}f(t)dt-int_{a}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{int_{x}^{x+h}f(t)dt}{h}=lim_{hdownarrow0}frac{f(c_{h})h}{h}
        $$

        where $c_{h}$ is between $x$ and $x+h$. Therefore, $lim_{hdownarrow0}c_{h}=x$.
        By continuity, $lim_{hdownarrow0}f(c_{h})=f(x)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 14 at 15:12









        parsiadparsiad

        17.7k32353




        17.7k32353






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073225%2fproof-of-first-fundamental-theorem-of-calculus%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$