$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$












3












$begingroup$


I have to solve this integral:



$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$



then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$



Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$



The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$



and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$



Can someone explain me why?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
    $endgroup$
    – Zubin Mukerjee
    Jan 17 at 23:12










  • $begingroup$
    @ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
    $endgroup$
    – Anne
    Jan 17 at 23:27












  • $begingroup$
    @Fabio yes. indeed, I've edited the text
    $endgroup$
    – Anne
    Jan 17 at 23:29
















3












$begingroup$


I have to solve this integral:



$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$



then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$



Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$



The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$



and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$



Can someone explain me why?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
    $endgroup$
    – Zubin Mukerjee
    Jan 17 at 23:12










  • $begingroup$
    @ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
    $endgroup$
    – Anne
    Jan 17 at 23:27












  • $begingroup$
    @Fabio yes. indeed, I've edited the text
    $endgroup$
    – Anne
    Jan 17 at 23:29














3












3








3





$begingroup$


I have to solve this integral:



$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$



then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$



Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$



The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$



and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$



Can someone explain me why?










share|cite|improve this question











$endgroup$




I have to solve this integral:



$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$



then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$



Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$



The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$



and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$



Can someone explain me why?







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 23:33







Anne

















asked Jan 17 at 23:03









AnneAnne

790419




790419












  • $begingroup$
    What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
    $endgroup$
    – Zubin Mukerjee
    Jan 17 at 23:12










  • $begingroup$
    @ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
    $endgroup$
    – Anne
    Jan 17 at 23:27












  • $begingroup$
    @Fabio yes. indeed, I've edited the text
    $endgroup$
    – Anne
    Jan 17 at 23:29


















  • $begingroup$
    What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
    $endgroup$
    – Zubin Mukerjee
    Jan 17 at 23:12










  • $begingroup$
    @ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
    $endgroup$
    – Anne
    Jan 17 at 23:27












  • $begingroup$
    @Fabio yes. indeed, I've edited the text
    $endgroup$
    – Anne
    Jan 17 at 23:29
















$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12




$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12












$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27






$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27














$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29




$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077633%2fint-0-frac54-fracx-sqrtx12x-3-sqrtx1-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077633%2fint-0-frac54-fracx-sqrtx12x-3-sqrtx1-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith