$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$
$begingroup$
I have to solve this integral:
$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$
then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$
Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$
The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$
and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$
Can someone explain me why?
real-analysis
$endgroup$
add a comment |
$begingroup$
I have to solve this integral:
$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$
then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$
Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$
The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$
and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$
Can someone explain me why?
real-analysis
$endgroup$
$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12
$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27
$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29
add a comment |
$begingroup$
I have to solve this integral:
$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$
then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$
Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$
The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$
and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$
Can someone explain me why?
real-analysis
$endgroup$
I have to solve this integral:
$$int_{0}^{frac{5}{4}} frac{x+sqrt{x+1}}{2x-3sqrt{x+1}} , dx$$
I tried with the substitution $u=sqrt{x+1}=g^{-1}(x)Rightarrow x=u^2-1=g(u) Rightarrow dx= g'(u)du=2udu$
then the integral becomes:
$$int frac{2u^3+2u^2-2u}{2u^2-3u-2} , du$$
Dividing the numerator :
$$int (u+frac{5}{2} ), du+int frac{frac{15}{2}u+5}{2u^2-3u-2} , du=$$
$$int (u+frac{5}{2} ), du+frac{5}{4}int frac{3u+2}{(u-2)(u+frac{1}{2})} , du$$
$$=int (u+frac{5}{2} ), du+frac{5}{4}int frac {16}{5}frac{1}{(u-2)} , du+frac{5}{4}int (-frac {1}{5})frac{1}{(u+frac{1}{2})} , du=$$
$$frac{u^2}{2}+frac{5}{2}u+4log|u-2|-frac{1}{4}log|u+frac{1}{2}|=$$
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log|sqrt{x+1}-2|-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|+C$$
The right result for the indefinite integral is:
$$frac{x+1}{2}+frac{5}{2} sqrt{x+1}+4log(2-sqrt{x+1})-frac{1}{4}log(2sqrt{x+1}+1)+C$$
and I don't understand why it is writtem $(2-sqrt{x+1})$ instead of $|sqrt{x+1}-2|$ and the difference in the last integral $-frac{1}{4}log(2sqrt{x+1}+1)$ and $-frac{1}{4}log|sqrt{x+1}-frac{1}{2}|$
Can someone explain me why?
real-analysis
real-analysis
edited Jan 17 at 23:33
Anne
asked Jan 17 at 23:03
AnneAnne
790419
790419
$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12
$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27
$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29
add a comment |
$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12
$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27
$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29
$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12
$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12
$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27
$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27
$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29
$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077633%2fint-0-frac54-fracx-sqrtx12x-3-sqrtx1-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077633%2fint-0-frac54-fracx-sqrtx12x-3-sqrtx1-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is the value of $sqrt{x+1}$ when $x$ is between $0$ and $5/4$? Is it less than or greater than $2$?
$endgroup$
– Zubin Mukerjee
Jan 17 at 23:12
$begingroup$
@ZubinMnhaveukerjee I think I have understood: when $0<x< frac{5}{4} $, $sqrt{x+1}<2$ and then $|sqrt{x+1}-2|=2-sqrt{x+1}$
$endgroup$
– Anne
Jan 17 at 23:27
$begingroup$
@Fabio yes. indeed, I've edited the text
$endgroup$
– Anne
Jan 17 at 23:29