Minimum value of $frac{4}{4-x^2}+frac{9}{9-y^2}$
$begingroup$
Given $x,y in (-2,2)$ and $xy=-1$
Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$
My try:
Converting the function into single variable we get:
$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$
$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$
Using Differentiation we get:
$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$
$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$
$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$
So the critical points are:
$x=0, x=pm sqrt{frac{2}{3}}$
But $x ne 0$ since $xy=-1$
$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$
By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$
Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$
Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$
Is there any other approach?
algebra-precalculus derivatives maxima-minima
$endgroup$
add a comment |
$begingroup$
Given $x,y in (-2,2)$ and $xy=-1$
Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$
My try:
Converting the function into single variable we get:
$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$
$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$
Using Differentiation we get:
$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$
$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$
$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$
So the critical points are:
$x=0, x=pm sqrt{frac{2}{3}}$
But $x ne 0$ since $xy=-1$
$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$
By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$
Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$
Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$
Is there any other approach?
algebra-precalculus derivatives maxima-minima
$endgroup$
$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16
add a comment |
$begingroup$
Given $x,y in (-2,2)$ and $xy=-1$
Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$
My try:
Converting the function into single variable we get:
$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$
$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$
Using Differentiation we get:
$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$
$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$
$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$
So the critical points are:
$x=0, x=pm sqrt{frac{2}{3}}$
But $x ne 0$ since $xy=-1$
$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$
By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$
Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$
Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$
Is there any other approach?
algebra-precalculus derivatives maxima-minima
$endgroup$
Given $x,y in (-2,2)$ and $xy=-1$
Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$
My try:
Converting the function into single variable we get:
$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$
$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$
Using Differentiation we get:
$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$
$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$
$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$
So the critical points are:
$x=0, x=pm sqrt{frac{2}{3}}$
But $x ne 0$ since $xy=-1$
$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$
By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$
Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$
Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$
Is there any other approach?
algebra-precalculus derivatives maxima-minima
algebra-precalculus derivatives maxima-minima
asked Jan 10 at 14:25
Umesh shankarUmesh shankar
2,68031219
2,68031219
$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16
add a comment |
$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16
$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16
$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Using $xy = -1$, we can put the fractions over a common denominator as
$${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.
$endgroup$
add a comment |
$begingroup$
From “harmonic mean $le$ arithmetic mean” one gets
$$
frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
= frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
$$
and from “arithmetic mean $ge$ geometric mean”
$$
frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
$$
so that
$$
f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
$$
In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
$$
( sqrt frac 23, -sqrt frac 32) quad text{and} quad
( -sqrt frac 23, sqrt frac 32)
$$
which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.
$endgroup$
add a comment |
$begingroup$
With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:
$$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$
Then
$$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
$$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
$$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
This is $0$ for $t=frac23$
$endgroup$
add a comment |
$begingroup$
From $xy=-1$
$$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$
Equality hold when $$3x=frac{2}{x}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068691%2fminimum-value-of-frac44-x2-frac99-y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using $xy = -1$, we can put the fractions over a common denominator as
$${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.
$endgroup$
add a comment |
$begingroup$
Using $xy = -1$, we can put the fractions over a common denominator as
$${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.
$endgroup$
add a comment |
$begingroup$
Using $xy = -1$, we can put the fractions over a common denominator as
$${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.
$endgroup$
Using $xy = -1$, we can put the fractions over a common denominator as
$${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.
answered Jan 10 at 15:07
Michael BehrendMichael Behrend
1,22746
1,22746
add a comment |
add a comment |
$begingroup$
From “harmonic mean $le$ arithmetic mean” one gets
$$
frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
= frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
$$
and from “arithmetic mean $ge$ geometric mean”
$$
frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
$$
so that
$$
f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
$$
In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
$$
( sqrt frac 23, -sqrt frac 32) quad text{and} quad
( -sqrt frac 23, sqrt frac 32)
$$
which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.
$endgroup$
add a comment |
$begingroup$
From “harmonic mean $le$ arithmetic mean” one gets
$$
frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
= frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
$$
and from “arithmetic mean $ge$ geometric mean”
$$
frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
$$
so that
$$
f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
$$
In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
$$
( sqrt frac 23, -sqrt frac 32) quad text{and} quad
( -sqrt frac 23, sqrt frac 32)
$$
which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.
$endgroup$
add a comment |
$begingroup$
From “harmonic mean $le$ arithmetic mean” one gets
$$
frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
= frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
$$
and from “arithmetic mean $ge$ geometric mean”
$$
frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
$$
so that
$$
f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
$$
In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
$$
( sqrt frac 23, -sqrt frac 32) quad text{and} quad
( -sqrt frac 23, sqrt frac 32)
$$
which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.
$endgroup$
From “harmonic mean $le$ arithmetic mean” one gets
$$
frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
= frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
$$
and from “arithmetic mean $ge$ geometric mean”
$$
frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
$$
so that
$$
f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
$$
In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
$$
( sqrt frac 23, -sqrt frac 32) quad text{and} quad
( -sqrt frac 23, sqrt frac 32)
$$
which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.
edited Jan 10 at 15:19
answered Jan 10 at 14:58


Martin RMartin R
28.1k33355
28.1k33355
add a comment |
add a comment |
$begingroup$
With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:
$$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$
Then
$$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
$$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
$$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
This is $0$ for $t=frac23$
$endgroup$
add a comment |
$begingroup$
With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:
$$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$
Then
$$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
$$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
$$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
This is $0$ for $t=frac23$
$endgroup$
add a comment |
$begingroup$
With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:
$$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$
Then
$$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
$$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
$$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
This is $0$ for $t=frac23$
$endgroup$
With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:
$$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$
Then
$$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
$$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
$$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
This is $0$ for $t=frac23$
edited Jan 10 at 14:57
answered Jan 10 at 14:30


ajotatxeajotatxe
53.8k23890
53.8k23890
add a comment |
add a comment |
$begingroup$
From $xy=-1$
$$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$
Equality hold when $$3x=frac{2}{x}$$
$endgroup$
add a comment |
$begingroup$
From $xy=-1$
$$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$
Equality hold when $$3x=frac{2}{x}$$
$endgroup$
add a comment |
$begingroup$
From $xy=-1$
$$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$
Equality hold when $$3x=frac{2}{x}$$
$endgroup$
From $xy=-1$
$$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$
Equality hold when $$3x=frac{2}{x}$$
answered Jan 12 at 10:08
DXTDXT
5,6742630
5,6742630
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068691%2fminimum-value-of-frac44-x2-frac99-y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16