Minimum value of $frac{4}{4-x^2}+frac{9}{9-y^2}$












3












$begingroup$


Given $x,y in (-2,2)$ and $xy=-1$



Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$



My try:



Converting the function into single variable we get:



$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$



$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$



Using Differentiation we get:



$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$



$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$



$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$



So the critical points are:



$x=0, x=pm sqrt{frac{2}{3}}$



But $x ne 0$ since $xy=-1$



$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$



By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$



Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$



Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$



Is there any other approach?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
    $endgroup$
    – Ross Millikan
    Jan 10 at 15:16
















3












$begingroup$


Given $x,y in (-2,2)$ and $xy=-1$



Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$



My try:



Converting the function into single variable we get:



$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$



$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$



Using Differentiation we get:



$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$



$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$



$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$



So the critical points are:



$x=0, x=pm sqrt{frac{2}{3}}$



But $x ne 0$ since $xy=-1$



$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$



By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$



Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$



Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$



Is there any other approach?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
    $endgroup$
    – Ross Millikan
    Jan 10 at 15:16














3












3








3


3



$begingroup$


Given $x,y in (-2,2)$ and $xy=-1$



Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$



My try:



Converting the function into single variable we get:



$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$



$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$



Using Differentiation we get:



$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$



$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$



$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$



So the critical points are:



$x=0, x=pm sqrt{frac{2}{3}}$



But $x ne 0$ since $xy=-1$



$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$



By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$



Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$



Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$



Is there any other approach?










share|cite|improve this question









$endgroup$




Given $x,y in (-2,2)$ and $xy=-1$



Minimum value of $$f(x,y)=frac{4}{4-x^2}+frac{9}{9-y^2}$$



My try:



Converting the function into single variable we get:



$$g(x)=frac{4}{4-x^2}+frac{9x^2}{9x^2-1}$$



$$g(x)=frac{4}{4-x^2}+1+frac{1}{9x^2-1}$$



Using Differentiation we get:



$$g'(x)=frac{8x}{(4-x^2)^2}-frac{18x}{(9x^2-1)^2}$$



$$g'(x)=2xleft(frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}right)$$



$$g'(x)=70xfrac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$



So the critical points are:



$x=0, x=pm sqrt{frac{2}{3}}$



But $x ne 0$ since $xy=-1$



$$g'(x)=70x frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$



By using derivative test we get Minimum occurs when $x=pm sqrt{frac{2}{3}}$



Hence $$x^2=frac{2}{3}, y^2=frac{3}{2}$$



Min value is $$frac{4}{4-frac{2}{3}}+frac{9}{9-frac{3}{2}}=frac{12}{5}$$



Is there any other approach?







algebra-precalculus derivatives maxima-minima






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 10 at 14:25









Umesh shankarUmesh shankar

2,68031219




2,68031219












  • $begingroup$
    You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
    $endgroup$
    – Ross Millikan
    Jan 10 at 15:16


















  • $begingroup$
    You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
    $endgroup$
    – Ross Millikan
    Jan 10 at 15:16
















$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16




$begingroup$
You also need to check the edges of the interval. They don't yield a smaller value here, but they could in other cases.
$endgroup$
– Ross Millikan
Jan 10 at 15:16










4 Answers
4






active

oldest

votes


















4












$begingroup$

Using $xy = -1$, we can put the fractions over a common denominator as
$${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.






share|cite|improve this answer









$endgroup$





















    4












    $begingroup$

    From “harmonic mean $le$ arithmetic mean” one gets
    $$
    frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
    = frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
    $$

    and from “arithmetic mean $ge$ geometric mean”
    $$
    frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
    $$

    so that
    $$
    f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
    $$

    In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
    $$
    ( sqrt frac 23, -sqrt frac 32) quad text{and} quad
    ( -sqrt frac 23, sqrt frac 32)
    $$

    which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.






    share|cite|improve this answer











    $endgroup$





















      1












      $begingroup$

      With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:



      $$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$



      Then
      $$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
      $$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
      $$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
      This is $0$ for $t=frac23$






      share|cite|improve this answer











      $endgroup$





















        1












        $begingroup$

        From $xy=-1$



        $$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$



        Equality hold when $$3x=frac{2}{x}$$






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068691%2fminimum-value-of-frac44-x2-frac99-y2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Using $xy = -1$, we can put the fractions over a common denominator as
          $${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
          So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.






          share|cite|improve this answer









          $endgroup$


















            4












            $begingroup$

            Using $xy = -1$, we can put the fractions over a common denominator as
            $${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
            So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.






            share|cite|improve this answer









            $endgroup$
















              4












              4








              4





              $begingroup$

              Using $xy = -1$, we can put the fractions over a common denominator as
              $${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
              So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.






              share|cite|improve this answer









              $endgroup$



              Using $xy = -1$, we can put the fractions over a common denominator as
              $${4over{4 - x^2}} + {9over{9 - y^2}} = {{72 - 9x^2 - 4y^2}over{37 - 9x^2 - 4y^2}} = 1 + {35over{37 - (9x^2 + 4y^2)}}$$
              So we need to minimize $9x^2 + 4y^2$. Since $9x^2 times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 10 at 15:07









              Michael BehrendMichael Behrend

              1,22746




              1,22746























                  4












                  $begingroup$

                  From “harmonic mean $le$ arithmetic mean” one gets
                  $$
                  frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
                  = frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
                  $$

                  and from “arithmetic mean $ge$ geometric mean”
                  $$
                  frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
                  $$

                  so that
                  $$
                  f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
                  $$

                  In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
                  $$
                  ( sqrt frac 23, -sqrt frac 32) quad text{and} quad
                  ( -sqrt frac 23, sqrt frac 32)
                  $$

                  which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.






                  share|cite|improve this answer











                  $endgroup$


















                    4












                    $begingroup$

                    From “harmonic mean $le$ arithmetic mean” one gets
                    $$
                    frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
                    = frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
                    $$

                    and from “arithmetic mean $ge$ geometric mean”
                    $$
                    frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
                    $$

                    so that
                    $$
                    f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
                    $$

                    In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
                    $$
                    ( sqrt frac 23, -sqrt frac 32) quad text{and} quad
                    ( -sqrt frac 23, sqrt frac 32)
                    $$

                    which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.






                    share|cite|improve this answer











                    $endgroup$
















                      4












                      4








                      4





                      $begingroup$

                      From “harmonic mean $le$ arithmetic mean” one gets
                      $$
                      frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
                      = frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
                      $$

                      and from “arithmetic mean $ge$ geometric mean”
                      $$
                      frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
                      $$

                      so that
                      $$
                      f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
                      $$

                      In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
                      $$
                      ( sqrt frac 23, -sqrt frac 32) quad text{and} quad
                      ( -sqrt frac 23, sqrt frac 32)
                      $$

                      which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.






                      share|cite|improve this answer











                      $endgroup$



                      From “harmonic mean $le$ arithmetic mean” one gets
                      $$
                      frac{2}{f(x, y)} le frac12 left(frac{4-x^2}{4}+ frac{9-y^2}{9} right)
                      = frac 12 left(2- frac{x^2}{4} - frac{y^2}{9} right)
                      $$

                      and from “arithmetic mean $ge$ geometric mean”
                      $$
                      frac{x^2}{4} + frac{y^2}{9}ge 2 frac{|xy|}{6} = frac 13
                      $$

                      so that
                      $$
                      f(x, y) ge frac{4}{2-frac 13} = frac{12}{5} , .
                      $$

                      In both estimates equality holds if $frac{x^2}{4} = frac{y^2}{9} iff x^2=frac{2}{3}, y^2=frac{3}{2},$ i.e. equality is attained the two points
                      $$
                      ( sqrt frac 23, -sqrt frac 32) quad text{and} quad
                      ( -sqrt frac 23, sqrt frac 32)
                      $$

                      which are both in the given domain $(-2, 2) times (-2, 2)$ of $f$.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 10 at 15:19

























                      answered Jan 10 at 14:58









                      Martin RMartin R

                      28.1k33355




                      28.1k33355























                          1












                          $begingroup$

                          With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:



                          $$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$



                          Then
                          $$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
                          $$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
                          $$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
                          This is $0$ for $t=frac23$






                          share|cite|improve this answer











                          $endgroup$


















                            1












                            $begingroup$

                            With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:



                            $$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$



                            Then
                            $$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
                            $$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
                            $$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
                            This is $0$ for $t=frac23$






                            share|cite|improve this answer











                            $endgroup$
















                              1












                              1








                              1





                              $begingroup$

                              With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:



                              $$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$



                              Then
                              $$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
                              $$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
                              $$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
                              This is $0$ for $t=frac23$






                              share|cite|improve this answer











                              $endgroup$



                              With the change of variable $t=x^2$, and differentiating the logarithm of the function, things should be a bit easier:



                              $$h(t)=frac4{4-t}+frac{9t}{9t-1},tinleft(frac14,4right)$$



                              Then
                              $$h(t)=frac{-9t^2+72t-4}{(4-t)(9t-1)}$$
                              $$log h(t)=log(-9t^2+72t-4)-log(4-t)-log(9t-1)$$
                              $$(log h(t))'=frac{-18t+72}{-9t^2+72t-4}+frac1{4-t}-frac9{9t-1}=frac{315t^2-140}{text{Irrelevant}}$$
                              This is $0$ for $t=frac23$







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jan 10 at 14:57

























                              answered Jan 10 at 14:30









                              ajotatxeajotatxe

                              53.8k23890




                              53.8k23890























                                  1












                                  $begingroup$

                                  From $xy=-1$



                                  $$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$



                                  Equality hold when $$3x=frac{2}{x}$$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    From $xy=-1$



                                    $$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$



                                    Equality hold when $$3x=frac{2}{x}$$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      From $xy=-1$



                                      $$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$



                                      Equality hold when $$3x=frac{2}{x}$$






                                      share|cite|improve this answer









                                      $endgroup$



                                      From $xy=-1$



                                      $$ S = frac{4}{4-x^2} + frac{9}{9-y^2} = 1 + frac{35}{25 - left(3x - frac{2}{x}right)^2}geq frac{12}{5}$$



                                      Equality hold when $$3x=frac{2}{x}$$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 12 at 10:08









                                      DXTDXT

                                      5,6742630




                                      5,6742630






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068691%2fminimum-value-of-frac44-x2-frac99-y2%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          MongoDB - Not Authorized To Execute Command

                                          How to fix TextFormField cause rebuild widget in Flutter

                                          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith