Prove that...












1














I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?










share|cite|improve this question




















  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 '18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 '18 at 7:21
















1














I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?










share|cite|improve this question




















  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 '18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 '18 at 7:21














1












1








1


4





I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?










share|cite|improve this question















I'm trying to calculate the expression: $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ and show that it is equal $4sqrt{3}$.



I was trying to group the summands and calculate sums of $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}} hspace{0.5cm}text{and} hspace{0.5cm} -frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}$$ where we get $$frac{2cosfrac{2pi}{15}+1}{sinfrac{2pi}{15}}-frac{2cosfrac{4pi}{15}-1}{sinfrac{8pi}{15}}$$ but unfortunately this sum is not simplified.

How to prove this equality?







trigonometry trigonometric-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 18 '18 at 6:41









idea

2,15441024




2,15441024










asked Nov 18 '18 at 6:34









Peter

192




192








  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 '18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 '18 at 7:21














  • 1




    co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
    – Arjang
    Nov 18 '18 at 6:46








  • 2




    math.stackexchange.com/questions/1591220/…
    – lab bhattacharjee
    Nov 18 '18 at 7:21








1




1




co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 '18 at 6:46






co context and nothing about where this is from? also see this : math.meta.stackexchange.com/questions/9959/…
– Arjang
Nov 18 '18 at 6:46






2




2




math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 '18 at 7:21




math.stackexchange.com/questions/1591220/…
– lab bhattacharjee
Nov 18 '18 at 7:21










4 Answers
4






active

oldest

votes


















3














$$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



We split them into two groups as shown:



$$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
And we see that (from sum-to-product and product-to-sum)



$Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



and



$Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



Hence it remains to find



$$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






share|cite|improve this answer































    2














    I use degrees:
    $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
    frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
    frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
    frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
    cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
    frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
    frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
    frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
    $$

    You can see see here: $cos72^circ = cos36^circ-frac12$.






    share|cite|improve this answer





























      1














      Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




      1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

      2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

      3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


      Rest of the angles are possible to calculate with the double angle formula.



      99,9% not indended to be solved this way, but ...






      share|cite|improve this answer































        1














        Hint:



        Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



        $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



        $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



        $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



        Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



        Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






        share|cite|improve this answer





















          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003208%2fprove-that-frac1-sin-frac-pi15-frac1-sin-frac2-pi15-frac1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



          We split them into two groups as shown:



          $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
          And we see that (from sum-to-product and product-to-sum)



          $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



          and



          $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



          Hence it remains to find



          $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



          From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






          share|cite|improve this answer




























            3














            $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



            We split them into two groups as shown:



            $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
            And we see that (from sum-to-product and product-to-sum)



            $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



            and



            $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



            Hence it remains to find



            $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



            From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






            share|cite|improve this answer


























              3












              3








              3






              $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



              We split them into two groups as shown:



              $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
              And we see that (from sum-to-product and product-to-sum)



              $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



              and



              $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



              Hence it remains to find



              $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



              From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$






              share|cite|improve this answer














              $$frac{1}{sinfrac{pi}{15}}+frac{1}{sinfrac{2pi}{15}}-frac{1}{sinfrac{4pi}{15}}+frac{1}{sinfrac{8pi}{15}}\ =frac{1}{sin12°}+frac{1}{sin24°}-frac{1}{sin48°}+frac{1}{sin96°} $$



              We split them into two groups as shown:



              $$frac{1}{sin12°}-frac{1}{sin48°} hspace{0.5cm}text{and}hspace{0.5cm} frac{1}{sin24°}+frac{1}{sin96°}$$
              And we see that (from sum-to-product and product-to-sum)



              $Large{frac{1}{sin12°}-frac{1}{sin48°}\ = frac{sin48°-sin12°}{sin12°sin48°}\ = frac{2cos30°sin18°}{{frac12}(cos36°-cos60°)}\=frac{2(frac{sqrt3}{2})sin18°}{{frac12}(cos36°-{frac12})}\=frac{4sqrt3sin18°}{2cos36°-1}}$



              and



              $Large{frac{1}{sin24°}+frac{1}{sin96°}\=frac{sin24°+sin96°}{sin24°sin96°}\=frac{2sin60°cos36°}{{frac12}(cos72°-cos120°)}\=frac{2({frac{sqrt3} 2})cos36°}{{frac12}(sin18°+{frac12})}\=frac{4sqrt3cos36°}{2sin18°+1}}$



              Hence it remains to find



              $$frac{4sqrt3sin18°}{2cos36°-1} + frac{4sqrt3cos36°}{2sin18°+1}$$



              From here we can determine $2cos36°-1=2sin18° $ and $ 2sin18°+1=2cos36°$. By plugging in these into the denominators and simplifying we get $4sqrt3$, which is what we want. $ _square$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 21 '18 at 9:00

























              answered Nov 18 '18 at 8:17









              Vee Hua Zhi

              759224




              759224























                  2














                  I use degrees:
                  $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                  frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                  frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                  frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                  cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                  frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                  frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                  frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                  $$

                  You can see see here: $cos72^circ = cos36^circ-frac12$.






                  share|cite|improve this answer


























                    2














                    I use degrees:
                    $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                    frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                    frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                    frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                    cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                    frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                    frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                    frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                    $$

                    You can see see here: $cos72^circ = cos36^circ-frac12$.






                    share|cite|improve this answer
























                      2












                      2








                      2






                      I use degrees:
                      $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                      frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                      frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                      frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                      cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                      frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                      frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                      frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                      $$

                      You can see see here: $cos72^circ = cos36^circ-frac12$.






                      share|cite|improve this answer












                      I use degrees:
                      $$frac{1}{sin 12^circ}+frac{1}{sin 24^circ}-frac{1}{sin48^circ}+frac{1}{sin96^circ}=\
                      frac{sin 96^circ+sin 12^circ}{sin 12^circsin 96^circ}+frac{sin 48^circ-sin 24^circ}{sin 24^circsin 48^circ} =\
                      frac{2sin 54^circcos 42^circ}{sin 12^circsin 96^circ}+frac{2cos 36^circsin 12^circ}{sin 24^circsin 48^circ} =\
                      frac{2cos 36^circrequire{cancel} cancel{sin 48^circ}}{2sin 12^circcancel{sin 48^circ}cos 48^circ}+frac{2cos 36^circcancel{sin 12^circ}}{2cancel{sin 12^circ}cos 12^circsin 48^circ} =\
                      cos 36^circcdot frac{cos 12^circsin 48^circ+sin 12^circcos 48^circ}{sin 12^circcos 12^circsin 48^circcos 48^circ} =\
                      frac{4cos 36^circsin 60^circ}{sin 24^circsin 96^circ}=\
                      frac{4cos 36^circsin 60^circ}{frac12(cos 72^circ-cos 120^circ)}=\
                      frac{4cos 36^circsin 60^circ}{frac12((cos 36^circ-frac12)+frac12)}=4sqrt{3}.
                      $$

                      You can see see here: $cos72^circ = cos36^circ-frac12$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 18 '18 at 8:44









                      farruhota

                      19.3k2736




                      19.3k2736























                          1














                          Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                          1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                          2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                          3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                          Rest of the angles are possible to calculate with the double angle formula.



                          99,9% not indended to be solved this way, but ...






                          share|cite|improve this answer




























                            1














                            Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                            1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                            2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                            3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                            Rest of the angles are possible to calculate with the double angle formula.



                            99,9% not indended to be solved this way, but ...






                            share|cite|improve this answer


























                              1












                              1








                              1






                              Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                              1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                              2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                              3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                              Rest of the angles are possible to calculate with the double angle formula.



                              99,9% not indended to be solved this way, but ...






                              share|cite|improve this answer














                              Well, this is not a full solution (I will not do the calculations), but I guess this is one of the ways to reach the end ...




                              1. $sin(frac{pi}{15}) = sin(frac{pi}{6} - frac{pi}{10})$

                              2. $sin(frac{pi}{10}) = sin(frac{1}{2}*frac{pi}{5})$

                              3. for the $frac{pi}{5}$ use the identity: $sin(5x) = 5sin(x)-20sin^3(x) + 16sin^5(x)$. It has a straightforward solution


                              Rest of the angles are possible to calculate with the double angle formula.



                              99,9% not indended to be solved this way, but ...







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Nov 18 '18 at 7:34

























                              answered Nov 18 '18 at 7:29









                              Makina

                              1,178215




                              1,178215























                                  1














                                  Hint:



                                  Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                  $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                  $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                  $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                  Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                  Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






                                  share|cite|improve this answer


























                                    1














                                    Hint:



                                    Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                    $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                    $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                    $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                    Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                    Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






                                    share|cite|improve this answer
























                                      1












                                      1








                                      1






                                      Hint:



                                      Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                      $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                      $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                      $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                      Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                      Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$






                                      share|cite|improve this answer












                                      Hint:



                                      Using $frac{1}{sin 8^circ}+frac{1}{sin 16^circ}+....+frac{1}{sin 4096^circ}+frac{1}{sin 8192^circ}=frac{1}{sin alpha}$,find $alpha$,



                                      $$dfrac1{sin12^circ}+dfrac1{sin24^circ}+dfrac1{sin48^circ}+dfrac1{sin96^circ}-dfrac2{sin48^circ}$$



                                      $$=cot6^circ-cot96^circ-dfrac2{sin48^circ}$$



                                      $cot6^circ-cot96^circ=cot6^circ+tan 6^circ=dfrac2{sin12^circ}$



                                      Now $dfrac1{sin12^circ}-dfrac1{sin48^circ}=dfrac{sin48^circ-sin12^circ}{sin48^circsin12^circ}=dfrac{4sin18^circcos30^circ}{cos36^circ-cos60^circ}$



                                      Using Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$, $cos36^circ-cos60^circ=sin18^circ$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Nov 20 '18 at 6:34









                                      lab bhattacharjee

                                      223k15156274




                                      223k15156274






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.





                                          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                          Please pay close attention to the following guidance:


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003208%2fprove-that-frac1-sin-frac-pi15-frac1-sin-frac2-pi15-frac1%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                          SQL update select statement

                                          'app-layout' is not a known element: how to share Component with different Modules