Does $sum q_i = infty$ imply $sum log(1+q_i)=infty$?
$begingroup$
My intuition is that the first-order term in the Taylor expansion should dominate the series, if divergent:
$$
log(1+x) = x - frac { x ^ { 2 } } { 2 } + frac { x ^ { 3 } } { 3 } - frac { x ^ { 4 } } { 4 } + cdots
$$
So we would get with Taylor expansion:
$$
sum_ilog(1+q_i) = sum_{i}sum_{k=1}^inftyfrac{q_i^k}{k} = sum_i q_i + sum_{i}sum_{k=2}^inftyfrac{q_i^k}{k}
$$
Is there a slick way to control the residual?
power-series taylor-expansion divergent-series
$endgroup$
add a comment |
$begingroup$
My intuition is that the first-order term in the Taylor expansion should dominate the series, if divergent:
$$
log(1+x) = x - frac { x ^ { 2 } } { 2 } + frac { x ^ { 3 } } { 3 } - frac { x ^ { 4 } } { 4 } + cdots
$$
So we would get with Taylor expansion:
$$
sum_ilog(1+q_i) = sum_{i}sum_{k=1}^inftyfrac{q_i^k}{k} = sum_i q_i + sum_{i}sum_{k=2}^inftyfrac{q_i^k}{k}
$$
Is there a slick way to control the residual?
power-series taylor-expansion divergent-series
$endgroup$
$begingroup$
If $q_i$'s are all non-negative, then the answer is yes. Otherwise, we have counter-examples.
$endgroup$
– Sangchul Lee
Jan 10 at 18:28
$begingroup$
Can you please come up with one, very curious.
$endgroup$
– nakajuice
Jan 10 at 18:42
$begingroup$
I will post an explicit construction when I am sit at my PC. But the idea is that, if $r_i = log(1+q_i)$ so that $q_i = e^{r_i}-1$, then $q_i > r_i$ unless $r_i=0$. So, with a careful choice of $r_i$'s, you can make $sum_i(q_i-r_i)=infty$ while $sum_i r_i$ converge.
$endgroup$
– Sangchul Lee
Jan 10 at 18:48
$begingroup$
@MathLover nice, thank you
$endgroup$
– nakajuice
Jan 10 at 18:56
add a comment |
$begingroup$
My intuition is that the first-order term in the Taylor expansion should dominate the series, if divergent:
$$
log(1+x) = x - frac { x ^ { 2 } } { 2 } + frac { x ^ { 3 } } { 3 } - frac { x ^ { 4 } } { 4 } + cdots
$$
So we would get with Taylor expansion:
$$
sum_ilog(1+q_i) = sum_{i}sum_{k=1}^inftyfrac{q_i^k}{k} = sum_i q_i + sum_{i}sum_{k=2}^inftyfrac{q_i^k}{k}
$$
Is there a slick way to control the residual?
power-series taylor-expansion divergent-series
$endgroup$
My intuition is that the first-order term in the Taylor expansion should dominate the series, if divergent:
$$
log(1+x) = x - frac { x ^ { 2 } } { 2 } + frac { x ^ { 3 } } { 3 } - frac { x ^ { 4 } } { 4 } + cdots
$$
So we would get with Taylor expansion:
$$
sum_ilog(1+q_i) = sum_{i}sum_{k=1}^inftyfrac{q_i^k}{k} = sum_i q_i + sum_{i}sum_{k=2}^inftyfrac{q_i^k}{k}
$$
Is there a slick way to control the residual?
power-series taylor-expansion divergent-series
power-series taylor-expansion divergent-series
asked Jan 10 at 18:24
nakajuicenakajuice
1,37811323
1,37811323
$begingroup$
If $q_i$'s are all non-negative, then the answer is yes. Otherwise, we have counter-examples.
$endgroup$
– Sangchul Lee
Jan 10 at 18:28
$begingroup$
Can you please come up with one, very curious.
$endgroup$
– nakajuice
Jan 10 at 18:42
$begingroup$
I will post an explicit construction when I am sit at my PC. But the idea is that, if $r_i = log(1+q_i)$ so that $q_i = e^{r_i}-1$, then $q_i > r_i$ unless $r_i=0$. So, with a careful choice of $r_i$'s, you can make $sum_i(q_i-r_i)=infty$ while $sum_i r_i$ converge.
$endgroup$
– Sangchul Lee
Jan 10 at 18:48
$begingroup$
@MathLover nice, thank you
$endgroup$
– nakajuice
Jan 10 at 18:56
add a comment |
$begingroup$
If $q_i$'s are all non-negative, then the answer is yes. Otherwise, we have counter-examples.
$endgroup$
– Sangchul Lee
Jan 10 at 18:28
$begingroup$
Can you please come up with one, very curious.
$endgroup$
– nakajuice
Jan 10 at 18:42
$begingroup$
I will post an explicit construction when I am sit at my PC. But the idea is that, if $r_i = log(1+q_i)$ so that $q_i = e^{r_i}-1$, then $q_i > r_i$ unless $r_i=0$. So, with a careful choice of $r_i$'s, you can make $sum_i(q_i-r_i)=infty$ while $sum_i r_i$ converge.
$endgroup$
– Sangchul Lee
Jan 10 at 18:48
$begingroup$
@MathLover nice, thank you
$endgroup$
– nakajuice
Jan 10 at 18:56
$begingroup$
If $q_i$'s are all non-negative, then the answer is yes. Otherwise, we have counter-examples.
$endgroup$
– Sangchul Lee
Jan 10 at 18:28
$begingroup$
If $q_i$'s are all non-negative, then the answer is yes. Otherwise, we have counter-examples.
$endgroup$
– Sangchul Lee
Jan 10 at 18:28
$begingroup$
Can you please come up with one, very curious.
$endgroup$
– nakajuice
Jan 10 at 18:42
$begingroup$
Can you please come up with one, very curious.
$endgroup$
– nakajuice
Jan 10 at 18:42
$begingroup$
I will post an explicit construction when I am sit at my PC. But the idea is that, if $r_i = log(1+q_i)$ so that $q_i = e^{r_i}-1$, then $q_i > r_i$ unless $r_i=0$. So, with a careful choice of $r_i$'s, you can make $sum_i(q_i-r_i)=infty$ while $sum_i r_i$ converge.
$endgroup$
– Sangchul Lee
Jan 10 at 18:48
$begingroup$
I will post an explicit construction when I am sit at my PC. But the idea is that, if $r_i = log(1+q_i)$ so that $q_i = e^{r_i}-1$, then $q_i > r_i$ unless $r_i=0$. So, with a careful choice of $r_i$'s, you can make $sum_i(q_i-r_i)=infty$ while $sum_i r_i$ converge.
$endgroup$
– Sangchul Lee
Jan 10 at 18:48
$begingroup$
@MathLover nice, thank you
$endgroup$
– nakajuice
Jan 10 at 18:56
$begingroup$
@MathLover nice, thank you
$endgroup$
– nakajuice
Jan 10 at 18:56
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint:
Consider $q_0=1$, $q_1=-1/2$, and $q_{i+2}=q_i$ for $i=0,1,2,cdots$
$endgroup$
add a comment |
$begingroup$
For $q_i>0$ or equivalently $ln (1+q_i)>0$, each series fails to equal $infty$ iff it has a finite limit instead. This is where it helps to work with the contrapositive. If $sum_iln (1+q_i)$ is finite for an infinite sequence $q_i$, $lim_{itoinfty}ln (1+q_i)=0$ so $lim_{itoinfty}q_i=0$. Since $ln (1+q_i)sim q_i$ for small $q_i$, this implies $sum_i q_i$ also converges. A comment of Sangchui Lee's references the fact that, with a suitable choice of not-all-positive $q_i$ (viz MathLover's answer), the sum of logarithms might approach neither $infty$ nor $-infty$. (Their example gives partial sums of the $ln (1+q_i)$ equal to either $ln 2$ or $0$, so there's no limit, infinite or otherwise.)
$endgroup$
add a comment |
$begingroup$
User @Math Lover provided an example where $ sum_{n=0}^{infty} q_n = infty$ but $ sum_{n=0}^{N} log(1+q_n)$ alternates between $log 2$ and $0$ in $N$. In this answer, we construct an example where
$$ sum_{n=0}^{infty} q_n = infty quad text{and} quad sum_{n=0}^{infty} log(1+q_n) = 0.$$
To this end, we prepare two auxiliary sequences:
$(epsilon_k)_{k=1}^{infty}$ is a sequence such that $1 geq epsilon_k geq epsilon_{k+1} > 0$ and $epsilon_k to 0$ as $k to infty$.
$(N_k)_{k=1}^{infty}$ is a sequence of positive integers such that $ N_k epsilon_k^2 geq 1$ for all $k$.
Now define $(r_n)$ and $(q_n)$ by
$$ (r_n)_{n=0}^{infty} = ( underbrace{ epsilon_1, -epsilon_1, cdots, epsilon_1, -epsilon_1 }_{2N_1text{-terms}}, underbrace{ epsilon_2, -epsilon_2, cdots, epsilon_2, -epsilon_2 }_{2N_2text{-terms}}, cdots ),
qquad q_n = e^{r_n} - 1. $$
Then $r_n = log(1+q_n)$, and
By the alternating series test, $sum_{n=0}^{infty} r_n$ converges. Moreover, its odd-th partial sums are identically zero, hence the sum is also zero.
Using the fact that $e^x geq 1 + x + frac{1}{e}x^2$ for $|x| leq 1$, it follows that
$$ q_n geq r_n + frac{1}{e}r_n^2 $$
Now summing over $n$, we obtain
$$ sum_{n=0}^{infty} q_n geq left( sum_{n=0}^{infty} r_n right) + left( sum_{k=1}^{infty} 2N_k cdot frac{epsilon_k^2}{e} right) geq sum_{k=1}^{infty} frac{2}{e} = infty. $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069005%2fdoes-sum-q-i-infty-imply-sum-log1q-i-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Consider $q_0=1$, $q_1=-1/2$, and $q_{i+2}=q_i$ for $i=0,1,2,cdots$
$endgroup$
add a comment |
$begingroup$
Hint:
Consider $q_0=1$, $q_1=-1/2$, and $q_{i+2}=q_i$ for $i=0,1,2,cdots$
$endgroup$
add a comment |
$begingroup$
Hint:
Consider $q_0=1$, $q_1=-1/2$, and $q_{i+2}=q_i$ for $i=0,1,2,cdots$
$endgroup$
Hint:
Consider $q_0=1$, $q_1=-1/2$, and $q_{i+2}=q_i$ for $i=0,1,2,cdots$
answered Jan 10 at 18:59
Math LoverMath Lover
14k31436
14k31436
add a comment |
add a comment |
$begingroup$
For $q_i>0$ or equivalently $ln (1+q_i)>0$, each series fails to equal $infty$ iff it has a finite limit instead. This is where it helps to work with the contrapositive. If $sum_iln (1+q_i)$ is finite for an infinite sequence $q_i$, $lim_{itoinfty}ln (1+q_i)=0$ so $lim_{itoinfty}q_i=0$. Since $ln (1+q_i)sim q_i$ for small $q_i$, this implies $sum_i q_i$ also converges. A comment of Sangchui Lee's references the fact that, with a suitable choice of not-all-positive $q_i$ (viz MathLover's answer), the sum of logarithms might approach neither $infty$ nor $-infty$. (Their example gives partial sums of the $ln (1+q_i)$ equal to either $ln 2$ or $0$, so there's no limit, infinite or otherwise.)
$endgroup$
add a comment |
$begingroup$
For $q_i>0$ or equivalently $ln (1+q_i)>0$, each series fails to equal $infty$ iff it has a finite limit instead. This is where it helps to work with the contrapositive. If $sum_iln (1+q_i)$ is finite for an infinite sequence $q_i$, $lim_{itoinfty}ln (1+q_i)=0$ so $lim_{itoinfty}q_i=0$. Since $ln (1+q_i)sim q_i$ for small $q_i$, this implies $sum_i q_i$ also converges. A comment of Sangchui Lee's references the fact that, with a suitable choice of not-all-positive $q_i$ (viz MathLover's answer), the sum of logarithms might approach neither $infty$ nor $-infty$. (Their example gives partial sums of the $ln (1+q_i)$ equal to either $ln 2$ or $0$, so there's no limit, infinite or otherwise.)
$endgroup$
add a comment |
$begingroup$
For $q_i>0$ or equivalently $ln (1+q_i)>0$, each series fails to equal $infty$ iff it has a finite limit instead. This is where it helps to work with the contrapositive. If $sum_iln (1+q_i)$ is finite for an infinite sequence $q_i$, $lim_{itoinfty}ln (1+q_i)=0$ so $lim_{itoinfty}q_i=0$. Since $ln (1+q_i)sim q_i$ for small $q_i$, this implies $sum_i q_i$ also converges. A comment of Sangchui Lee's references the fact that, with a suitable choice of not-all-positive $q_i$ (viz MathLover's answer), the sum of logarithms might approach neither $infty$ nor $-infty$. (Their example gives partial sums of the $ln (1+q_i)$ equal to either $ln 2$ or $0$, so there's no limit, infinite or otherwise.)
$endgroup$
For $q_i>0$ or equivalently $ln (1+q_i)>0$, each series fails to equal $infty$ iff it has a finite limit instead. This is where it helps to work with the contrapositive. If $sum_iln (1+q_i)$ is finite for an infinite sequence $q_i$, $lim_{itoinfty}ln (1+q_i)=0$ so $lim_{itoinfty}q_i=0$. Since $ln (1+q_i)sim q_i$ for small $q_i$, this implies $sum_i q_i$ also converges. A comment of Sangchui Lee's references the fact that, with a suitable choice of not-all-positive $q_i$ (viz MathLover's answer), the sum of logarithms might approach neither $infty$ nor $-infty$. (Their example gives partial sums of the $ln (1+q_i)$ equal to either $ln 2$ or $0$, so there's no limit, infinite or otherwise.)
edited Jan 10 at 19:23
answered Jan 10 at 18:42
J.G.J.G.
25.6k22539
25.6k22539
add a comment |
add a comment |
$begingroup$
User @Math Lover provided an example where $ sum_{n=0}^{infty} q_n = infty$ but $ sum_{n=0}^{N} log(1+q_n)$ alternates between $log 2$ and $0$ in $N$. In this answer, we construct an example where
$$ sum_{n=0}^{infty} q_n = infty quad text{and} quad sum_{n=0}^{infty} log(1+q_n) = 0.$$
To this end, we prepare two auxiliary sequences:
$(epsilon_k)_{k=1}^{infty}$ is a sequence such that $1 geq epsilon_k geq epsilon_{k+1} > 0$ and $epsilon_k to 0$ as $k to infty$.
$(N_k)_{k=1}^{infty}$ is a sequence of positive integers such that $ N_k epsilon_k^2 geq 1$ for all $k$.
Now define $(r_n)$ and $(q_n)$ by
$$ (r_n)_{n=0}^{infty} = ( underbrace{ epsilon_1, -epsilon_1, cdots, epsilon_1, -epsilon_1 }_{2N_1text{-terms}}, underbrace{ epsilon_2, -epsilon_2, cdots, epsilon_2, -epsilon_2 }_{2N_2text{-terms}}, cdots ),
qquad q_n = e^{r_n} - 1. $$
Then $r_n = log(1+q_n)$, and
By the alternating series test, $sum_{n=0}^{infty} r_n$ converges. Moreover, its odd-th partial sums are identically zero, hence the sum is also zero.
Using the fact that $e^x geq 1 + x + frac{1}{e}x^2$ for $|x| leq 1$, it follows that
$$ q_n geq r_n + frac{1}{e}r_n^2 $$
Now summing over $n$, we obtain
$$ sum_{n=0}^{infty} q_n geq left( sum_{n=0}^{infty} r_n right) + left( sum_{k=1}^{infty} 2N_k cdot frac{epsilon_k^2}{e} right) geq sum_{k=1}^{infty} frac{2}{e} = infty. $$
$endgroup$
add a comment |
$begingroup$
User @Math Lover provided an example where $ sum_{n=0}^{infty} q_n = infty$ but $ sum_{n=0}^{N} log(1+q_n)$ alternates between $log 2$ and $0$ in $N$. In this answer, we construct an example where
$$ sum_{n=0}^{infty} q_n = infty quad text{and} quad sum_{n=0}^{infty} log(1+q_n) = 0.$$
To this end, we prepare two auxiliary sequences:
$(epsilon_k)_{k=1}^{infty}$ is a sequence such that $1 geq epsilon_k geq epsilon_{k+1} > 0$ and $epsilon_k to 0$ as $k to infty$.
$(N_k)_{k=1}^{infty}$ is a sequence of positive integers such that $ N_k epsilon_k^2 geq 1$ for all $k$.
Now define $(r_n)$ and $(q_n)$ by
$$ (r_n)_{n=0}^{infty} = ( underbrace{ epsilon_1, -epsilon_1, cdots, epsilon_1, -epsilon_1 }_{2N_1text{-terms}}, underbrace{ epsilon_2, -epsilon_2, cdots, epsilon_2, -epsilon_2 }_{2N_2text{-terms}}, cdots ),
qquad q_n = e^{r_n} - 1. $$
Then $r_n = log(1+q_n)$, and
By the alternating series test, $sum_{n=0}^{infty} r_n$ converges. Moreover, its odd-th partial sums are identically zero, hence the sum is also zero.
Using the fact that $e^x geq 1 + x + frac{1}{e}x^2$ for $|x| leq 1$, it follows that
$$ q_n geq r_n + frac{1}{e}r_n^2 $$
Now summing over $n$, we obtain
$$ sum_{n=0}^{infty} q_n geq left( sum_{n=0}^{infty} r_n right) + left( sum_{k=1}^{infty} 2N_k cdot frac{epsilon_k^2}{e} right) geq sum_{k=1}^{infty} frac{2}{e} = infty. $$
$endgroup$
add a comment |
$begingroup$
User @Math Lover provided an example where $ sum_{n=0}^{infty} q_n = infty$ but $ sum_{n=0}^{N} log(1+q_n)$ alternates between $log 2$ and $0$ in $N$. In this answer, we construct an example where
$$ sum_{n=0}^{infty} q_n = infty quad text{and} quad sum_{n=0}^{infty} log(1+q_n) = 0.$$
To this end, we prepare two auxiliary sequences:
$(epsilon_k)_{k=1}^{infty}$ is a sequence such that $1 geq epsilon_k geq epsilon_{k+1} > 0$ and $epsilon_k to 0$ as $k to infty$.
$(N_k)_{k=1}^{infty}$ is a sequence of positive integers such that $ N_k epsilon_k^2 geq 1$ for all $k$.
Now define $(r_n)$ and $(q_n)$ by
$$ (r_n)_{n=0}^{infty} = ( underbrace{ epsilon_1, -epsilon_1, cdots, epsilon_1, -epsilon_1 }_{2N_1text{-terms}}, underbrace{ epsilon_2, -epsilon_2, cdots, epsilon_2, -epsilon_2 }_{2N_2text{-terms}}, cdots ),
qquad q_n = e^{r_n} - 1. $$
Then $r_n = log(1+q_n)$, and
By the alternating series test, $sum_{n=0}^{infty} r_n$ converges. Moreover, its odd-th partial sums are identically zero, hence the sum is also zero.
Using the fact that $e^x geq 1 + x + frac{1}{e}x^2$ for $|x| leq 1$, it follows that
$$ q_n geq r_n + frac{1}{e}r_n^2 $$
Now summing over $n$, we obtain
$$ sum_{n=0}^{infty} q_n geq left( sum_{n=0}^{infty} r_n right) + left( sum_{k=1}^{infty} 2N_k cdot frac{epsilon_k^2}{e} right) geq sum_{k=1}^{infty} frac{2}{e} = infty. $$
$endgroup$
User @Math Lover provided an example where $ sum_{n=0}^{infty} q_n = infty$ but $ sum_{n=0}^{N} log(1+q_n)$ alternates between $log 2$ and $0$ in $N$. In this answer, we construct an example where
$$ sum_{n=0}^{infty} q_n = infty quad text{and} quad sum_{n=0}^{infty} log(1+q_n) = 0.$$
To this end, we prepare two auxiliary sequences:
$(epsilon_k)_{k=1}^{infty}$ is a sequence such that $1 geq epsilon_k geq epsilon_{k+1} > 0$ and $epsilon_k to 0$ as $k to infty$.
$(N_k)_{k=1}^{infty}$ is a sequence of positive integers such that $ N_k epsilon_k^2 geq 1$ for all $k$.
Now define $(r_n)$ and $(q_n)$ by
$$ (r_n)_{n=0}^{infty} = ( underbrace{ epsilon_1, -epsilon_1, cdots, epsilon_1, -epsilon_1 }_{2N_1text{-terms}}, underbrace{ epsilon_2, -epsilon_2, cdots, epsilon_2, -epsilon_2 }_{2N_2text{-terms}}, cdots ),
qquad q_n = e^{r_n} - 1. $$
Then $r_n = log(1+q_n)$, and
By the alternating series test, $sum_{n=0}^{infty} r_n$ converges. Moreover, its odd-th partial sums are identically zero, hence the sum is also zero.
Using the fact that $e^x geq 1 + x + frac{1}{e}x^2$ for $|x| leq 1$, it follows that
$$ q_n geq r_n + frac{1}{e}r_n^2 $$
Now summing over $n$, we obtain
$$ sum_{n=0}^{infty} q_n geq left( sum_{n=0}^{infty} r_n right) + left( sum_{k=1}^{infty} 2N_k cdot frac{epsilon_k^2}{e} right) geq sum_{k=1}^{infty} frac{2}{e} = infty. $$
answered Jan 11 at 2:05
Sangchul LeeSangchul Lee
93k12167269
93k12167269
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069005%2fdoes-sum-q-i-infty-imply-sum-log1q-i-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If $q_i$'s are all non-negative, then the answer is yes. Otherwise, we have counter-examples.
$endgroup$
– Sangchul Lee
Jan 10 at 18:28
$begingroup$
Can you please come up with one, very curious.
$endgroup$
– nakajuice
Jan 10 at 18:42
$begingroup$
I will post an explicit construction when I am sit at my PC. But the idea is that, if $r_i = log(1+q_i)$ so that $q_i = e^{r_i}-1$, then $q_i > r_i$ unless $r_i=0$. So, with a careful choice of $r_i$'s, you can make $sum_i(q_i-r_i)=infty$ while $sum_i r_i$ converge.
$endgroup$
– Sangchul Lee
Jan 10 at 18:48
$begingroup$
@MathLover nice, thank you
$endgroup$
– nakajuice
Jan 10 at 18:56