Should I use Liouville thm or continuity?












1












$begingroup$


Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)



$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and



$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.



My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!










share|cite|improve this question









$endgroup$












  • $begingroup$
    If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
    $endgroup$
    – Will M.
    Jan 9 at 19:57
















1












$begingroup$


Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)



$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and



$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.



My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!










share|cite|improve this question









$endgroup$












  • $begingroup$
    If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
    $endgroup$
    – Will M.
    Jan 9 at 19:57














1












1








1





$begingroup$


Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)



$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and



$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.



My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!










share|cite|improve this question









$endgroup$




Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)



$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and



$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.



My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!







complex-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 9 at 19:48









seyedseyed

566




566












  • $begingroup$
    If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
    $endgroup$
    – Will M.
    Jan 9 at 19:57


















  • $begingroup$
    If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
    $endgroup$
    – Will M.
    Jan 9 at 19:57
















$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57




$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57










2 Answers
2






active

oldest

votes


















1












$begingroup$

Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
$$
|g(z)-p(z)|leepsilon,quadforall zin K.
$$
If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    You want an entire function satisfying the given two properties.



    What about the constant function $f(z)=1/200$ ?






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      $|1/200 - 1| = 199/200 > 1/100$.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      Jan 10 at 10:31











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067886%2fshould-i-use-liouville-thm-or-continuity%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
    $$
    |g(z)-p(z)|leepsilon,quadforall zin K.
    $$
    If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
      $$
      |g(z)-p(z)|leepsilon,quadforall zin K.
      $$
      If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
        $$
        |g(z)-p(z)|leepsilon,quadforall zin K.
        $$
        If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.






        share|cite|improve this answer









        $endgroup$



        Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
        $$
        |g(z)-p(z)|leepsilon,quadforall zin K.
        $$
        If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 15 at 10:16









        SongSong

        11.5k628




        11.5k628























            0












            $begingroup$

            You want an entire function satisfying the given two properties.



            What about the constant function $f(z)=1/200$ ?






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              $|1/200 - 1| = 199/200 > 1/100$.
              $endgroup$
              – Martín-Blas Pérez Pinilla
              Jan 10 at 10:31
















            0












            $begingroup$

            You want an entire function satisfying the given two properties.



            What about the constant function $f(z)=1/200$ ?






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              $|1/200 - 1| = 199/200 > 1/100$.
              $endgroup$
              – Martín-Blas Pérez Pinilla
              Jan 10 at 10:31














            0












            0








            0





            $begingroup$

            You want an entire function satisfying the given two properties.



            What about the constant function $f(z)=1/200$ ?






            share|cite|improve this answer









            $endgroup$



            You want an entire function satisfying the given two properties.



            What about the constant function $f(z)=1/200$ ?







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 10 at 7:13









            EmptyEmpty

            8,12652661




            8,12652661












            • $begingroup$
              $|1/200 - 1| = 199/200 > 1/100$.
              $endgroup$
              – Martín-Blas Pérez Pinilla
              Jan 10 at 10:31


















            • $begingroup$
              $|1/200 - 1| = 199/200 > 1/100$.
              $endgroup$
              – Martín-Blas Pérez Pinilla
              Jan 10 at 10:31
















            $begingroup$
            $|1/200 - 1| = 199/200 > 1/100$.
            $endgroup$
            – Martín-Blas Pérez Pinilla
            Jan 10 at 10:31




            $begingroup$
            $|1/200 - 1| = 199/200 > 1/100$.
            $endgroup$
            – Martín-Blas Pérez Pinilla
            Jan 10 at 10:31


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067886%2fshould-i-use-liouville-thm-or-continuity%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith