Should I use Liouville thm or continuity?
$begingroup$
Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)
$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and
$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.
My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!
complex-analysis
$endgroup$
add a comment |
$begingroup$
Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)
$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and
$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.
My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!
complex-analysis
$endgroup$
$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57
add a comment |
$begingroup$
Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)
$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and
$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.
My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!
complex-analysis
$endgroup$
Make an examples $f:Bbb{C}toBbb{C}$ holomorph (If it exists) with the properties:(Justify your answer)
$|f(z)|leq frac{1}{100}$ if $|z|leq 1$ and
$|f(z)-1|leq frac{1}{100}$ if $|z-3|leq 1$.
My attemp: I confuesd to use Liouville thm or continuity?
Please guide me how should I think about it!
complex-analysis
complex-analysis
asked Jan 9 at 19:48
seyedseyed
566
566
$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57
add a comment |
$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57
$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57
$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
$$
|g(z)-p(z)|leepsilon,quadforall zin K.
$$ If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.
$endgroup$
add a comment |
$begingroup$
You want an entire function satisfying the given two properties.
What about the constant function $f(z)=1/200$ ?
$endgroup$
$begingroup$
$|1/200 - 1| = 199/200 > 1/100$.
$endgroup$
– Martín-Blas Pérez Pinilla
Jan 10 at 10:31
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067886%2fshould-i-use-liouville-thm-or-continuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
$$
|g(z)-p(z)|leepsilon,quadforall zin K.
$$ If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.
$endgroup$
add a comment |
$begingroup$
Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
$$
|g(z)-p(z)|leepsilon,quadforall zin K.
$$ If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.
$endgroup$
add a comment |
$begingroup$
Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
$$
|g(z)-p(z)|leepsilon,quadforall zin K.
$$ If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.
$endgroup$
Let us define $g(z)=0$ on $|z|le 1$ and $g(z)=1$ on $|z-3|le 1$. Then $g$ is analytic on a neigoborhood of $K={|z|le 1}cup {|z-3|le 1}$. Note that $Bbb Csetminus K$ is connected. By Runge's theorem, for every $epsilon>0$, there exists a polynomial $p(z)$ such that
$$
|g(z)-p(z)|leepsilon,quadforall zin K.
$$ If we let $epsilon =frac{1}{100}$, then $p$ is a function we are looking for.
answered Jan 15 at 10:16
SongSong
11.5k628
11.5k628
add a comment |
add a comment |
$begingroup$
You want an entire function satisfying the given two properties.
What about the constant function $f(z)=1/200$ ?
$endgroup$
$begingroup$
$|1/200 - 1| = 199/200 > 1/100$.
$endgroup$
– Martín-Blas Pérez Pinilla
Jan 10 at 10:31
add a comment |
$begingroup$
You want an entire function satisfying the given two properties.
What about the constant function $f(z)=1/200$ ?
$endgroup$
$begingroup$
$|1/200 - 1| = 199/200 > 1/100$.
$endgroup$
– Martín-Blas Pérez Pinilla
Jan 10 at 10:31
add a comment |
$begingroup$
You want an entire function satisfying the given two properties.
What about the constant function $f(z)=1/200$ ?
$endgroup$
You want an entire function satisfying the given two properties.
What about the constant function $f(z)=1/200$ ?
answered Jan 10 at 7:13


EmptyEmpty
8,12652661
8,12652661
$begingroup$
$|1/200 - 1| = 199/200 > 1/100$.
$endgroup$
– Martín-Blas Pérez Pinilla
Jan 10 at 10:31
add a comment |
$begingroup$
$|1/200 - 1| = 199/200 > 1/100$.
$endgroup$
– Martín-Blas Pérez Pinilla
Jan 10 at 10:31
$begingroup$
$|1/200 - 1| = 199/200 > 1/100$.
$endgroup$
– Martín-Blas Pérez Pinilla
Jan 10 at 10:31
$begingroup$
$|1/200 - 1| = 199/200 > 1/100$.
$endgroup$
– Martín-Blas Pérez Pinilla
Jan 10 at 10:31
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067886%2fshould-i-use-liouville-thm-or-continuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If $g$ is an entire function, it is continuous in particular, and hence, bounded by some constant $a = a(D) > 0$ on the disc $D.$
$endgroup$
– Will M.
Jan 9 at 19:57