${u_{k}}$ is a sequence in $mathbb{R}^{n}$ that converges to $u$. Prove that $lim_{ktoinfty} langle u_{k}, v...
$begingroup$
Let ${u_{k}}$ be a sequence in $mathbb{R}^{n}$ that converges to
$u$. Prove that $lim_{ktoinfty} langle u_{k}, v rangle = langle
u, v rangle$
Here, $langle u, v rangle$ denotes the inner product of $u$ and $v$.
My attempt:
Okay, so I want to show $forall epsilon > 0$, there exists some index $K$ such that
$$left|langle u_{k}, vrangle - langle u, vrangleright| < epsilon $$
for all $k geq K$. Using the definition of an inner product, we can write
$$left|langle u_{k}, vrangle - langle u, vrangleright| = left|sum_{i=1}^{n} u_{k_{i}} v_{i} - sum_{i=1}^{n}u_{i}v_{i} right| = left|sum_{i=1}^{n}v_{i}(u_{k_{i}} - u_{i}) right| = |langle u_{k} - u, vrangle|$$
I don't know how to finish from here. I think we need to use the fact that $lim_{ktoinfty u_{k}} = u$. Since we know ${u_{k}}$ converges to $u$, for all $epsilon > 0$, there is some $K'$ so that for $k geq K'$, the quantity $|u_{k} - u_{i}|$ is less than $epsilon$.
real-analysis
$endgroup$
add a comment |
$begingroup$
Let ${u_{k}}$ be a sequence in $mathbb{R}^{n}$ that converges to
$u$. Prove that $lim_{ktoinfty} langle u_{k}, v rangle = langle
u, v rangle$
Here, $langle u, v rangle$ denotes the inner product of $u$ and $v$.
My attempt:
Okay, so I want to show $forall epsilon > 0$, there exists some index $K$ such that
$$left|langle u_{k}, vrangle - langle u, vrangleright| < epsilon $$
for all $k geq K$. Using the definition of an inner product, we can write
$$left|langle u_{k}, vrangle - langle u, vrangleright| = left|sum_{i=1}^{n} u_{k_{i}} v_{i} - sum_{i=1}^{n}u_{i}v_{i} right| = left|sum_{i=1}^{n}v_{i}(u_{k_{i}} - u_{i}) right| = |langle u_{k} - u, vrangle|$$
I don't know how to finish from here. I think we need to use the fact that $lim_{ktoinfty u_{k}} = u$. Since we know ${u_{k}}$ converges to $u$, for all $epsilon > 0$, there is some $K'$ so that for $k geq K'$, the quantity $|u_{k} - u_{i}|$ is less than $epsilon$.
real-analysis
$endgroup$
$begingroup$
Triangle inequality. Note each component goes to $0$.
$endgroup$
– Zachary Selk
Jan 17 at 23:45
add a comment |
$begingroup$
Let ${u_{k}}$ be a sequence in $mathbb{R}^{n}$ that converges to
$u$. Prove that $lim_{ktoinfty} langle u_{k}, v rangle = langle
u, v rangle$
Here, $langle u, v rangle$ denotes the inner product of $u$ and $v$.
My attempt:
Okay, so I want to show $forall epsilon > 0$, there exists some index $K$ such that
$$left|langle u_{k}, vrangle - langle u, vrangleright| < epsilon $$
for all $k geq K$. Using the definition of an inner product, we can write
$$left|langle u_{k}, vrangle - langle u, vrangleright| = left|sum_{i=1}^{n} u_{k_{i}} v_{i} - sum_{i=1}^{n}u_{i}v_{i} right| = left|sum_{i=1}^{n}v_{i}(u_{k_{i}} - u_{i}) right| = |langle u_{k} - u, vrangle|$$
I don't know how to finish from here. I think we need to use the fact that $lim_{ktoinfty u_{k}} = u$. Since we know ${u_{k}}$ converges to $u$, for all $epsilon > 0$, there is some $K'$ so that for $k geq K'$, the quantity $|u_{k} - u_{i}|$ is less than $epsilon$.
real-analysis
$endgroup$
Let ${u_{k}}$ be a sequence in $mathbb{R}^{n}$ that converges to
$u$. Prove that $lim_{ktoinfty} langle u_{k}, v rangle = langle
u, v rangle$
Here, $langle u, v rangle$ denotes the inner product of $u$ and $v$.
My attempt:
Okay, so I want to show $forall epsilon > 0$, there exists some index $K$ such that
$$left|langle u_{k}, vrangle - langle u, vrangleright| < epsilon $$
for all $k geq K$. Using the definition of an inner product, we can write
$$left|langle u_{k}, vrangle - langle u, vrangleright| = left|sum_{i=1}^{n} u_{k_{i}} v_{i} - sum_{i=1}^{n}u_{i}v_{i} right| = left|sum_{i=1}^{n}v_{i}(u_{k_{i}} - u_{i}) right| = |langle u_{k} - u, vrangle|$$
I don't know how to finish from here. I think we need to use the fact that $lim_{ktoinfty u_{k}} = u$. Since we know ${u_{k}}$ converges to $u$, for all $epsilon > 0$, there is some $K'$ so that for $k geq K'$, the quantity $|u_{k} - u_{i}|$ is less than $epsilon$.
real-analysis
real-analysis
asked Jan 17 at 23:43
stackofhay42stackofhay42
2267
2267
$begingroup$
Triangle inequality. Note each component goes to $0$.
$endgroup$
– Zachary Selk
Jan 17 at 23:45
add a comment |
$begingroup$
Triangle inequality. Note each component goes to $0$.
$endgroup$
– Zachary Selk
Jan 17 at 23:45
$begingroup$
Triangle inequality. Note each component goes to $0$.
$endgroup$
– Zachary Selk
Jan 17 at 23:45
$begingroup$
Triangle inequality. Note each component goes to $0$.
$endgroup$
– Zachary Selk
Jan 17 at 23:45
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use the linearity of the scalar product and the Cauchy-Schwarz-inequality
$endgroup$
$begingroup$
I am having trouble finishing
$endgroup$
– stackofhay42
Jan 18 at 0:04
$begingroup$
Where do we use linearity? I can apply C-S Inequality to get $|langle u_{k} - u, vrangle| leq ||u_{k} - u|| cdot ||v|| = text{dist}(u_{k}, u) cdot ||v||$. So, do I define my index to be $K = K' cdot ||v||$, where $K'$ is the index for which $text{dist}(u_{k}, u) < epsilon$ for all $k geq K'$?
$endgroup$
– stackofhay42
Jan 18 at 0:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077674%2fu-k-is-a-sequence-in-mathbbrn-that-converges-to-u-prove-that%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the linearity of the scalar product and the Cauchy-Schwarz-inequality
$endgroup$
$begingroup$
I am having trouble finishing
$endgroup$
– stackofhay42
Jan 18 at 0:04
$begingroup$
Where do we use linearity? I can apply C-S Inequality to get $|langle u_{k} - u, vrangle| leq ||u_{k} - u|| cdot ||v|| = text{dist}(u_{k}, u) cdot ||v||$. So, do I define my index to be $K = K' cdot ||v||$, where $K'$ is the index for which $text{dist}(u_{k}, u) < epsilon$ for all $k geq K'$?
$endgroup$
– stackofhay42
Jan 18 at 0:12
add a comment |
$begingroup$
Use the linearity of the scalar product and the Cauchy-Schwarz-inequality
$endgroup$
$begingroup$
I am having trouble finishing
$endgroup$
– stackofhay42
Jan 18 at 0:04
$begingroup$
Where do we use linearity? I can apply C-S Inequality to get $|langle u_{k} - u, vrangle| leq ||u_{k} - u|| cdot ||v|| = text{dist}(u_{k}, u) cdot ||v||$. So, do I define my index to be $K = K' cdot ||v||$, where $K'$ is the index for which $text{dist}(u_{k}, u) < epsilon$ for all $k geq K'$?
$endgroup$
– stackofhay42
Jan 18 at 0:12
add a comment |
$begingroup$
Use the linearity of the scalar product and the Cauchy-Schwarz-inequality
$endgroup$
Use the linearity of the scalar product and the Cauchy-Schwarz-inequality
answered Jan 17 at 23:56
NicolasNicolas
472
472
$begingroup$
I am having trouble finishing
$endgroup$
– stackofhay42
Jan 18 at 0:04
$begingroup$
Where do we use linearity? I can apply C-S Inequality to get $|langle u_{k} - u, vrangle| leq ||u_{k} - u|| cdot ||v|| = text{dist}(u_{k}, u) cdot ||v||$. So, do I define my index to be $K = K' cdot ||v||$, where $K'$ is the index for which $text{dist}(u_{k}, u) < epsilon$ for all $k geq K'$?
$endgroup$
– stackofhay42
Jan 18 at 0:12
add a comment |
$begingroup$
I am having trouble finishing
$endgroup$
– stackofhay42
Jan 18 at 0:04
$begingroup$
Where do we use linearity? I can apply C-S Inequality to get $|langle u_{k} - u, vrangle| leq ||u_{k} - u|| cdot ||v|| = text{dist}(u_{k}, u) cdot ||v||$. So, do I define my index to be $K = K' cdot ||v||$, where $K'$ is the index for which $text{dist}(u_{k}, u) < epsilon$ for all $k geq K'$?
$endgroup$
– stackofhay42
Jan 18 at 0:12
$begingroup$
I am having trouble finishing
$endgroup$
– stackofhay42
Jan 18 at 0:04
$begingroup$
I am having trouble finishing
$endgroup$
– stackofhay42
Jan 18 at 0:04
$begingroup$
Where do we use linearity? I can apply C-S Inequality to get $|langle u_{k} - u, vrangle| leq ||u_{k} - u|| cdot ||v|| = text{dist}(u_{k}, u) cdot ||v||$. So, do I define my index to be $K = K' cdot ||v||$, where $K'$ is the index for which $text{dist}(u_{k}, u) < epsilon$ for all $k geq K'$?
$endgroup$
– stackofhay42
Jan 18 at 0:12
$begingroup$
Where do we use linearity? I can apply C-S Inequality to get $|langle u_{k} - u, vrangle| leq ||u_{k} - u|| cdot ||v|| = text{dist}(u_{k}, u) cdot ||v||$. So, do I define my index to be $K = K' cdot ||v||$, where $K'$ is the index for which $text{dist}(u_{k}, u) < epsilon$ for all $k geq K'$?
$endgroup$
– stackofhay42
Jan 18 at 0:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077674%2fu-k-is-a-sequence-in-mathbbrn-that-converges-to-u-prove-that%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Triangle inequality. Note each component goes to $0$.
$endgroup$
– Zachary Selk
Jan 17 at 23:45