Uniform convergence of this series?












1












$begingroup$


Let us consider : $f_n : mathbb{R}ni x mapsto frac{x}{(x^2+n^2)log(n)}inmathbb{R}$ for $n> 1$.



I need to prove that $sum _{nge 0}f_n$ is uniformly convergent.
I've already proved that it is not normally convergent by studying the term $(f_n)'$.



Thanks in advance !










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Dzoooks Indeed it's $n>1$, my mistake. Your hint seems to be linked with normal convergence of the series ?
    $endgroup$
    – Maman
    Jan 9 at 1:46










  • $begingroup$
    Indeed, uniform convergence basically means it is independent of $x$.
    $endgroup$
    – Dzoooks
    Jan 9 at 1:50










  • $begingroup$
    @Dzoooks Ok I know what you meant ! It depends on the references, but some people use two notions : "uniform convergence" and "normal convergence" and the second one implies the first. And the goal of the exercise is to prove that there is only uniform convergence with no normal convergence.
    $endgroup$
    – Maman
    Jan 9 at 2:02






  • 2




    $begingroup$
    @Dzoooks your inequality isn't true. Take $x=n$.
    $endgroup$
    – mouthetics
    Jan 9 at 2:08
















1












$begingroup$


Let us consider : $f_n : mathbb{R}ni x mapsto frac{x}{(x^2+n^2)log(n)}inmathbb{R}$ for $n> 1$.



I need to prove that $sum _{nge 0}f_n$ is uniformly convergent.
I've already proved that it is not normally convergent by studying the term $(f_n)'$.



Thanks in advance !










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Dzoooks Indeed it's $n>1$, my mistake. Your hint seems to be linked with normal convergence of the series ?
    $endgroup$
    – Maman
    Jan 9 at 1:46










  • $begingroup$
    Indeed, uniform convergence basically means it is independent of $x$.
    $endgroup$
    – Dzoooks
    Jan 9 at 1:50










  • $begingroup$
    @Dzoooks Ok I know what you meant ! It depends on the references, but some people use two notions : "uniform convergence" and "normal convergence" and the second one implies the first. And the goal of the exercise is to prove that there is only uniform convergence with no normal convergence.
    $endgroup$
    – Maman
    Jan 9 at 2:02






  • 2




    $begingroup$
    @Dzoooks your inequality isn't true. Take $x=n$.
    $endgroup$
    – mouthetics
    Jan 9 at 2:08














1












1








1





$begingroup$


Let us consider : $f_n : mathbb{R}ni x mapsto frac{x}{(x^2+n^2)log(n)}inmathbb{R}$ for $n> 1$.



I need to prove that $sum _{nge 0}f_n$ is uniformly convergent.
I've already proved that it is not normally convergent by studying the term $(f_n)'$.



Thanks in advance !










share|cite|improve this question











$endgroup$




Let us consider : $f_n : mathbb{R}ni x mapsto frac{x}{(x^2+n^2)log(n)}inmathbb{R}$ for $n> 1$.



I need to prove that $sum _{nge 0}f_n$ is uniformly convergent.
I've already proved that it is not normally convergent by studying the term $(f_n)'$.



Thanks in advance !







real-analysis sequences-and-series convergence uniform-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 22:47









Song

11.2k628




11.2k628










asked Jan 9 at 1:31









MamanMaman

1,174722




1,174722












  • $begingroup$
    @Dzoooks Indeed it's $n>1$, my mistake. Your hint seems to be linked with normal convergence of the series ?
    $endgroup$
    – Maman
    Jan 9 at 1:46










  • $begingroup$
    Indeed, uniform convergence basically means it is independent of $x$.
    $endgroup$
    – Dzoooks
    Jan 9 at 1:50










  • $begingroup$
    @Dzoooks Ok I know what you meant ! It depends on the references, but some people use two notions : "uniform convergence" and "normal convergence" and the second one implies the first. And the goal of the exercise is to prove that there is only uniform convergence with no normal convergence.
    $endgroup$
    – Maman
    Jan 9 at 2:02






  • 2




    $begingroup$
    @Dzoooks your inequality isn't true. Take $x=n$.
    $endgroup$
    – mouthetics
    Jan 9 at 2:08


















  • $begingroup$
    @Dzoooks Indeed it's $n>1$, my mistake. Your hint seems to be linked with normal convergence of the series ?
    $endgroup$
    – Maman
    Jan 9 at 1:46










  • $begingroup$
    Indeed, uniform convergence basically means it is independent of $x$.
    $endgroup$
    – Dzoooks
    Jan 9 at 1:50










  • $begingroup$
    @Dzoooks Ok I know what you meant ! It depends on the references, but some people use two notions : "uniform convergence" and "normal convergence" and the second one implies the first. And the goal of the exercise is to prove that there is only uniform convergence with no normal convergence.
    $endgroup$
    – Maman
    Jan 9 at 2:02






  • 2




    $begingroup$
    @Dzoooks your inequality isn't true. Take $x=n$.
    $endgroup$
    – mouthetics
    Jan 9 at 2:08
















$begingroup$
@Dzoooks Indeed it's $n>1$, my mistake. Your hint seems to be linked with normal convergence of the series ?
$endgroup$
– Maman
Jan 9 at 1:46




$begingroup$
@Dzoooks Indeed it's $n>1$, my mistake. Your hint seems to be linked with normal convergence of the series ?
$endgroup$
– Maman
Jan 9 at 1:46












$begingroup$
Indeed, uniform convergence basically means it is independent of $x$.
$endgroup$
– Dzoooks
Jan 9 at 1:50




$begingroup$
Indeed, uniform convergence basically means it is independent of $x$.
$endgroup$
– Dzoooks
Jan 9 at 1:50












$begingroup$
@Dzoooks Ok I know what you meant ! It depends on the references, but some people use two notions : "uniform convergence" and "normal convergence" and the second one implies the first. And the goal of the exercise is to prove that there is only uniform convergence with no normal convergence.
$endgroup$
– Maman
Jan 9 at 2:02




$begingroup$
@Dzoooks Ok I know what you meant ! It depends on the references, but some people use two notions : "uniform convergence" and "normal convergence" and the second one implies the first. And the goal of the exercise is to prove that there is only uniform convergence with no normal convergence.
$endgroup$
– Maman
Jan 9 at 2:02




2




2




$begingroup$
@Dzoooks your inequality isn't true. Take $x=n$.
$endgroup$
– mouthetics
Jan 9 at 2:08




$begingroup$
@Dzoooks your inequality isn't true. Take $x=n$.
$endgroup$
– mouthetics
Jan 9 at 2:08










1 Answer
1






active

oldest

votes


















3












$begingroup$

We will use Cauchy's test. Let us consider
$$
Big|sum_{k=n+1}^m f_k(x)Big|=sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}
$$
for $m>n$. We can see that
$$begin{eqnarray}
sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}&le& frac{1}{log n}sum_{k=n+1}^m frac{|x|}{x^2+k^2}\
&le&frac{1}{log n}int_n^m frac{|x|}{x^2+y^2}dy\
&=&frac{1}{log n}int_{frac{n}{|x|}}^{frac{m}{|x|}} frac{1}{1+z^2}dz\
&le&frac{1}{log n}int_{0}^{infty} frac{1}{1+z^2}dz\
&=&frac{pi}{2log n}
end{eqnarray}$$
for all $xinmathbb{R}$. Thus, we have
$$
lim_{n,mtoinfty}Big|sum_{k=n+1}^m f_kBig|_infty lelim_{ntoinfty}frac{pi}{2log n}=0
$$
and Cauchy's test gives the result.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you but my mistake, it's the "series" not the "sequence" of functions. And with your argument it proves that this series is not normal convergent !
    $endgroup$
    – Maman
    Jan 9 at 14:48










  • $begingroup$
    @Maman I've edited my answer.
    $endgroup$
    – Song
    Jan 9 at 16:36










  • $begingroup$
    Thank you but can you justify the inequality : $sumlimits_{k=n+1}^{m} frac{mid x mid}{x^2 +k^2}le int limits_{n}^{m} frac{mid x mid}{x^2+y^2}mathrm{d}y$ ?
    $endgroup$
    – Maman
    Jan 9 at 18:32






  • 1




    $begingroup$
    @Maman It is derived from$$ frac{1}{x^2+k^2}= int_{k-1}^k frac{1}{x^2+k^2}dyle int_{k-1}^k frac{1}{x^2+y^2}dy.$$ Compare the area below the graph of $ymapsto frac{1}{x^2+y^2}$.
    $endgroup$
    – Song
    Jan 9 at 18:44












  • $begingroup$
    Indeed very nice !
    $endgroup$
    – Maman
    Jan 9 at 18:59











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066962%2funiform-convergence-of-this-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We will use Cauchy's test. Let us consider
$$
Big|sum_{k=n+1}^m f_k(x)Big|=sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}
$$
for $m>n$. We can see that
$$begin{eqnarray}
sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}&le& frac{1}{log n}sum_{k=n+1}^m frac{|x|}{x^2+k^2}\
&le&frac{1}{log n}int_n^m frac{|x|}{x^2+y^2}dy\
&=&frac{1}{log n}int_{frac{n}{|x|}}^{frac{m}{|x|}} frac{1}{1+z^2}dz\
&le&frac{1}{log n}int_{0}^{infty} frac{1}{1+z^2}dz\
&=&frac{pi}{2log n}
end{eqnarray}$$
for all $xinmathbb{R}$. Thus, we have
$$
lim_{n,mtoinfty}Big|sum_{k=n+1}^m f_kBig|_infty lelim_{ntoinfty}frac{pi}{2log n}=0
$$
and Cauchy's test gives the result.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you but my mistake, it's the "series" not the "sequence" of functions. And with your argument it proves that this series is not normal convergent !
    $endgroup$
    – Maman
    Jan 9 at 14:48










  • $begingroup$
    @Maman I've edited my answer.
    $endgroup$
    – Song
    Jan 9 at 16:36










  • $begingroup$
    Thank you but can you justify the inequality : $sumlimits_{k=n+1}^{m} frac{mid x mid}{x^2 +k^2}le int limits_{n}^{m} frac{mid x mid}{x^2+y^2}mathrm{d}y$ ?
    $endgroup$
    – Maman
    Jan 9 at 18:32






  • 1




    $begingroup$
    @Maman It is derived from$$ frac{1}{x^2+k^2}= int_{k-1}^k frac{1}{x^2+k^2}dyle int_{k-1}^k frac{1}{x^2+y^2}dy.$$ Compare the area below the graph of $ymapsto frac{1}{x^2+y^2}$.
    $endgroup$
    – Song
    Jan 9 at 18:44












  • $begingroup$
    Indeed very nice !
    $endgroup$
    – Maman
    Jan 9 at 18:59
















3












$begingroup$

We will use Cauchy's test. Let us consider
$$
Big|sum_{k=n+1}^m f_k(x)Big|=sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}
$$
for $m>n$. We can see that
$$begin{eqnarray}
sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}&le& frac{1}{log n}sum_{k=n+1}^m frac{|x|}{x^2+k^2}\
&le&frac{1}{log n}int_n^m frac{|x|}{x^2+y^2}dy\
&=&frac{1}{log n}int_{frac{n}{|x|}}^{frac{m}{|x|}} frac{1}{1+z^2}dz\
&le&frac{1}{log n}int_{0}^{infty} frac{1}{1+z^2}dz\
&=&frac{pi}{2log n}
end{eqnarray}$$
for all $xinmathbb{R}$. Thus, we have
$$
lim_{n,mtoinfty}Big|sum_{k=n+1}^m f_kBig|_infty lelim_{ntoinfty}frac{pi}{2log n}=0
$$
and Cauchy's test gives the result.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you but my mistake, it's the "series" not the "sequence" of functions. And with your argument it proves that this series is not normal convergent !
    $endgroup$
    – Maman
    Jan 9 at 14:48










  • $begingroup$
    @Maman I've edited my answer.
    $endgroup$
    – Song
    Jan 9 at 16:36










  • $begingroup$
    Thank you but can you justify the inequality : $sumlimits_{k=n+1}^{m} frac{mid x mid}{x^2 +k^2}le int limits_{n}^{m} frac{mid x mid}{x^2+y^2}mathrm{d}y$ ?
    $endgroup$
    – Maman
    Jan 9 at 18:32






  • 1




    $begingroup$
    @Maman It is derived from$$ frac{1}{x^2+k^2}= int_{k-1}^k frac{1}{x^2+k^2}dyle int_{k-1}^k frac{1}{x^2+y^2}dy.$$ Compare the area below the graph of $ymapsto frac{1}{x^2+y^2}$.
    $endgroup$
    – Song
    Jan 9 at 18:44












  • $begingroup$
    Indeed very nice !
    $endgroup$
    – Maman
    Jan 9 at 18:59














3












3








3





$begingroup$

We will use Cauchy's test. Let us consider
$$
Big|sum_{k=n+1}^m f_k(x)Big|=sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}
$$
for $m>n$. We can see that
$$begin{eqnarray}
sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}&le& frac{1}{log n}sum_{k=n+1}^m frac{|x|}{x^2+k^2}\
&le&frac{1}{log n}int_n^m frac{|x|}{x^2+y^2}dy\
&=&frac{1}{log n}int_{frac{n}{|x|}}^{frac{m}{|x|}} frac{1}{1+z^2}dz\
&le&frac{1}{log n}int_{0}^{infty} frac{1}{1+z^2}dz\
&=&frac{pi}{2log n}
end{eqnarray}$$
for all $xinmathbb{R}$. Thus, we have
$$
lim_{n,mtoinfty}Big|sum_{k=n+1}^m f_kBig|_infty lelim_{ntoinfty}frac{pi}{2log n}=0
$$
and Cauchy's test gives the result.






share|cite|improve this answer











$endgroup$



We will use Cauchy's test. Let us consider
$$
Big|sum_{k=n+1}^m f_k(x)Big|=sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}
$$
for $m>n$. We can see that
$$begin{eqnarray}
sum_{k=n+1}^m frac{|x|}{(x^2+k^2)log k}&le& frac{1}{log n}sum_{k=n+1}^m frac{|x|}{x^2+k^2}\
&le&frac{1}{log n}int_n^m frac{|x|}{x^2+y^2}dy\
&=&frac{1}{log n}int_{frac{n}{|x|}}^{frac{m}{|x|}} frac{1}{1+z^2}dz\
&le&frac{1}{log n}int_{0}^{infty} frac{1}{1+z^2}dz\
&=&frac{pi}{2log n}
end{eqnarray}$$
for all $xinmathbb{R}$. Thus, we have
$$
lim_{n,mtoinfty}Big|sum_{k=n+1}^m f_kBig|_infty lelim_{ntoinfty}frac{pi}{2log n}=0
$$
and Cauchy's test gives the result.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 9 at 16:42

























answered Jan 9 at 6:15









SongSong

11.2k628




11.2k628












  • $begingroup$
    Thank you but my mistake, it's the "series" not the "sequence" of functions. And with your argument it proves that this series is not normal convergent !
    $endgroup$
    – Maman
    Jan 9 at 14:48










  • $begingroup$
    @Maman I've edited my answer.
    $endgroup$
    – Song
    Jan 9 at 16:36










  • $begingroup$
    Thank you but can you justify the inequality : $sumlimits_{k=n+1}^{m} frac{mid x mid}{x^2 +k^2}le int limits_{n}^{m} frac{mid x mid}{x^2+y^2}mathrm{d}y$ ?
    $endgroup$
    – Maman
    Jan 9 at 18:32






  • 1




    $begingroup$
    @Maman It is derived from$$ frac{1}{x^2+k^2}= int_{k-1}^k frac{1}{x^2+k^2}dyle int_{k-1}^k frac{1}{x^2+y^2}dy.$$ Compare the area below the graph of $ymapsto frac{1}{x^2+y^2}$.
    $endgroup$
    – Song
    Jan 9 at 18:44












  • $begingroup$
    Indeed very nice !
    $endgroup$
    – Maman
    Jan 9 at 18:59


















  • $begingroup$
    Thank you but my mistake, it's the "series" not the "sequence" of functions. And with your argument it proves that this series is not normal convergent !
    $endgroup$
    – Maman
    Jan 9 at 14:48










  • $begingroup$
    @Maman I've edited my answer.
    $endgroup$
    – Song
    Jan 9 at 16:36










  • $begingroup$
    Thank you but can you justify the inequality : $sumlimits_{k=n+1}^{m} frac{mid x mid}{x^2 +k^2}le int limits_{n}^{m} frac{mid x mid}{x^2+y^2}mathrm{d}y$ ?
    $endgroup$
    – Maman
    Jan 9 at 18:32






  • 1




    $begingroup$
    @Maman It is derived from$$ frac{1}{x^2+k^2}= int_{k-1}^k frac{1}{x^2+k^2}dyle int_{k-1}^k frac{1}{x^2+y^2}dy.$$ Compare the area below the graph of $ymapsto frac{1}{x^2+y^2}$.
    $endgroup$
    – Song
    Jan 9 at 18:44












  • $begingroup$
    Indeed very nice !
    $endgroup$
    – Maman
    Jan 9 at 18:59
















$begingroup$
Thank you but my mistake, it's the "series" not the "sequence" of functions. And with your argument it proves that this series is not normal convergent !
$endgroup$
– Maman
Jan 9 at 14:48




$begingroup$
Thank you but my mistake, it's the "series" not the "sequence" of functions. And with your argument it proves that this series is not normal convergent !
$endgroup$
– Maman
Jan 9 at 14:48












$begingroup$
@Maman I've edited my answer.
$endgroup$
– Song
Jan 9 at 16:36




$begingroup$
@Maman I've edited my answer.
$endgroup$
– Song
Jan 9 at 16:36












$begingroup$
Thank you but can you justify the inequality : $sumlimits_{k=n+1}^{m} frac{mid x mid}{x^2 +k^2}le int limits_{n}^{m} frac{mid x mid}{x^2+y^2}mathrm{d}y$ ?
$endgroup$
– Maman
Jan 9 at 18:32




$begingroup$
Thank you but can you justify the inequality : $sumlimits_{k=n+1}^{m} frac{mid x mid}{x^2 +k^2}le int limits_{n}^{m} frac{mid x mid}{x^2+y^2}mathrm{d}y$ ?
$endgroup$
– Maman
Jan 9 at 18:32




1




1




$begingroup$
@Maman It is derived from$$ frac{1}{x^2+k^2}= int_{k-1}^k frac{1}{x^2+k^2}dyle int_{k-1}^k frac{1}{x^2+y^2}dy.$$ Compare the area below the graph of $ymapsto frac{1}{x^2+y^2}$.
$endgroup$
– Song
Jan 9 at 18:44






$begingroup$
@Maman It is derived from$$ frac{1}{x^2+k^2}= int_{k-1}^k frac{1}{x^2+k^2}dyle int_{k-1}^k frac{1}{x^2+y^2}dy.$$ Compare the area below the graph of $ymapsto frac{1}{x^2+y^2}$.
$endgroup$
– Song
Jan 9 at 18:44














$begingroup$
Indeed very nice !
$endgroup$
– Maman
Jan 9 at 18:59




$begingroup$
Indeed very nice !
$endgroup$
– Maman
Jan 9 at 18:59


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066962%2funiform-convergence-of-this-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith