Vector functions and differentiation
$begingroup$
I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?
Exercise:
Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.
Solution:
begin{align}
frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
end{align}
calculus derivatives vectors proof-explanation
$endgroup$
add a comment |
$begingroup$
I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?
Exercise:
Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.
Solution:
begin{align}
frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
end{align}
calculus derivatives vectors proof-explanation
$endgroup$
add a comment |
$begingroup$
I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?
Exercise:
Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.
Solution:
begin{align}
frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
end{align}
calculus derivatives vectors proof-explanation
$endgroup$
I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?
Exercise:
Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.
Solution:
begin{align}
frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
end{align}
calculus derivatives vectors proof-explanation
calculus derivatives vectors proof-explanation
edited Jan 10 at 17:19
the_fox
2,79221537
2,79221537
asked Jan 10 at 16:55
user503154
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Maybe if you expand in components it will help
$$
|{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
$$
So that
$$
frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
$$
$endgroup$
add a comment |
$begingroup$
The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.
We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
Using that (for positive $x$):
$$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
$$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
and thus
$$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$
$endgroup$
add a comment |
$begingroup$
$|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.
Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$
$|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068902%2fvector-functions-and-differentiation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Maybe if you expand in components it will help
$$
|{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
$$
So that
$$
frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
$$
$endgroup$
add a comment |
$begingroup$
Maybe if you expand in components it will help
$$
|{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
$$
So that
$$
frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
$$
$endgroup$
add a comment |
$begingroup$
Maybe if you expand in components it will help
$$
|{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
$$
So that
$$
frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
$$
$endgroup$
Maybe if you expand in components it will help
$$
|{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
$$
So that
$$
frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
$$
answered Jan 10 at 17:03
caveraccaverac
14.6k31130
14.6k31130
add a comment |
add a comment |
$begingroup$
The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.
We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
Using that (for positive $x$):
$$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
$$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
and thus
$$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$
$endgroup$
add a comment |
$begingroup$
The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.
We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
Using that (for positive $x$):
$$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
$$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
and thus
$$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$
$endgroup$
add a comment |
$begingroup$
The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.
We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
Using that (for positive $x$):
$$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
$$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
and thus
$$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$
$endgroup$
The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.
We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
Using that (for positive $x$):
$$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
$$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
and thus
$$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$
answered Jan 10 at 17:15
b00n heTb00n heT
10.3k12235
10.3k12235
add a comment |
add a comment |
$begingroup$
$|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.
Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$
$|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
$endgroup$
add a comment |
$begingroup$
$|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.
Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$
$|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
$endgroup$
add a comment |
$begingroup$
$|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.
Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$
$|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
$endgroup$
$|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.
Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$
$|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$
edited Jan 10 at 17:25
answered Jan 10 at 17:13


Shubham JohriShubham Johri
5,102717
5,102717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068902%2fvector-functions-and-differentiation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown