Vector functions and differentiation












1












$begingroup$


I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?



Exercise:



Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.



Solution:



begin{align}
frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
end{align}










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?



    Exercise:



    Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.



    Solution:



    begin{align}
    frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
    end{align}










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?



      Exercise:



      Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.



      Solution:



      begin{align}
      frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
      end{align}










      share|cite|improve this question











      $endgroup$




      I am confused with the solution to the following question. I'm not sure how to follow the steps from the 2nd line onwards and how it relates to the chain rule. Can someone please break this down for me? Why has ${bf|{a}|}^2 = bf{a}cdot{a}$ been used?



      Exercise:



      Let a be a vector function. Calculate $frac{d(f({bf{|a|}})}{dt}$.



      Solution:



      begin{align}
      frac{d(f({|bf{a}|})}{dt} &= frac{d}{dt}({|bf{a}|}) f'({|bf{a}|}) \ {|bf{a}|}^2 &= bf{a}cdot{a} quad \ 2{|bf{a}|} frac{d}{dt} ({|bf{a}|}) &= 2{bf{a}cdot{dot{a}}} \ frac{d}{dt}(f({|bf{a}|}) &= frac{{bf{a} cdot{a}}}{{|bf{a}|}} f'({|bf{a}|})
      end{align}







      calculus derivatives vectors proof-explanation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 10 at 17:19









      the_fox

      2,79221537




      2,79221537










      asked Jan 10 at 16:55







      user503154





























          3 Answers
          3






          active

          oldest

          votes


















          0












          $begingroup$

          Maybe if you expand in components it will help



          $$
          |{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
          $$



          So that



          $$
          frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
          $$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.



            We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
            Using that (for positive $x$):
            $$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
            $$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
            and thus
            $$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              $|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.



              Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$



              $|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$



              This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$






              share|cite|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068902%2fvector-functions-and-differentiation%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown
























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                0












                $begingroup$

                Maybe if you expand in components it will help



                $$
                |{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
                $$



                So that



                $$
                frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
                $$






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Maybe if you expand in components it will help



                  $$
                  |{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
                  $$



                  So that



                  $$
                  frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
                  $$






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Maybe if you expand in components it will help



                    $$
                    |{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
                    $$



                    So that



                    $$
                    frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
                    $$






                    share|cite|improve this answer









                    $endgroup$



                    Maybe if you expand in components it will help



                    $$
                    |{bf a}|^2 = {bf a}cdot {bf a} = sum_k a_k a_k
                    $$



                    So that



                    $$
                    frac{{rm d}}{{rm d}t}|{bf a}|^2 = frac{{rm d}}{{rm d}t}sum_k a_k a_k = sum_k a_k frac{{rm d}a_k}{{rm d}t} + frac{{rm d}a_k}{{rm d}t}a_k = 2sum_k a_k frac{{rm d}a_k}{{rm d}t} = 2sum_k a_k dot{a}_k = 2 {bf a}cdot dot{bf a}
                    $$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 10 at 17:03









                    caveraccaverac

                    14.6k31130




                    14.6k31130























                        0












                        $begingroup$

                        The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.



                        We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
                        Using that (for positive $x$):
                        $$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
                        $$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
                        and thus
                        $$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.



                          We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
                          Using that (for positive $x$):
                          $$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
                          $$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
                          and thus
                          $$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.



                            We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
                            Using that (for positive $x$):
                            $$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
                            $$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
                            and thus
                            $$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$






                            share|cite|improve this answer









                            $endgroup$



                            The reason why the identity is used is to avoid having to deal directly with the norm function. Instead the product rule is used and the calculation is simpler, as we are taking the derivative of known functions.



                            We could apply the same idea to compute the derivative of $sqrt{x}$ from scratch by only knowing the derivative of $x$:
                            Using that (for positive $x$):
                            $$(sqrt{x})^2=x$$ we apply the derivative on both sides and use the product rule
                            $$2sqrt{x}cdot frac{d}{dx}(sqrt{x})^=frac{d}{dx}((sqrt{x})^2)=frac{d}{dx}x=1$$
                            and thus
                            $$frac{d}{dx}sqrt{x}=frac1{2sqrt{x}}$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 10 at 17:15









                            b00n heTb00n heT

                            10.3k12235




                            10.3k12235























                                0












                                $begingroup$

                                $|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.



                                Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$



                                $|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$



                                This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$






                                share|cite|improve this answer











                                $endgroup$


















                                  0












                                  $begingroup$

                                  $|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.



                                  Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$



                                  $|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$



                                  This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$






                                  share|cite|improve this answer











                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    $|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.



                                    Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$



                                    $|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$



                                    This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$






                                    share|cite|improve this answer











                                    $endgroup$



                                    $|mathbf a|^2=mathbf acdotmathbf a$ has been used because you want to express the final answer in terms of $displaystylemathbf{dot a}=frac{dmathbf a}{dt}$.



                                    Chain rule gives$$frac{df(|mathbf a|)}{dt}=frac{df(|mathbf a|)}{d|mathbf a|}frac{d|mathbf a|}{dt}=f'(|mathbf a|)frac{d|mathbf a|}{dt}$$



                                    $|mathbf a|$ is also a function of $mathbf a$. Use the chain rule to differentiate $|mathbf a|^2=mathbf acdotmathbf a$ with respect to $t$ to get,$$2|mathbf a|frac{d|mathbf a|}{dt}=mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a=2mathbf acdotdot{mathbf a}implies frac{d|mathbf a|}{dt}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$Alternatively, you can also differentiate $|mathbf a|=sqrt{mathbf acdotmathbf a}$ with respect to $t$ to get$$frac{d|mathbf a|}{dt}=frac12cdotfrac{mathbf acdotfrac{dmathbf a}{dt}+frac{dmathbf a}{dt}cdotmathbf a}{sqrt{mathbf acdotmathbf a}}=frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$



                                    This gives the answer as$$frac{df(|mathbf a|)}{dt}=f'(|mathbf a|)frac{mathbf acdotdot{mathbf a}}{|mathbf a|}$$







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Jan 10 at 17:25

























                                    answered Jan 10 at 17:13









                                    Shubham JohriShubham Johri

                                    5,102717




                                    5,102717






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068902%2fvector-functions-and-differentiation%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                        How to fix TextFormField cause rebuild widget in Flutter