Why does this sum $sumlimits_{n=1}^{infty}{frac{2^{2^{n-1}}}{2^{2^n}-1}}$ converge to 1?
$begingroup$
A friend of mine gave me this quiz: Where does this sum converge to?
$$sumlimits_{n=1}^{infty}{frac{2^{2^{n-1}}}{2^{2^n}-1}}$$
$a_1=frac{2}{3} , a_2=frac{4}{15}, a_3=frac{16}{255},...$and $S_1=frac{2}{3}, S_2=frac{14}{15} , S_3=frac{254}{255}, ...$
So I thought that this sum will converge to 1.
Let $$2^{2^{n-1}}=A_n, a_n=frac{A_n}{A_n^2-1}=frac{1}{2}left(frac{1}{A_n+1}+frac{1}{A_n-1}right)$$
Since $A_n = A_{n-1}^2$, I thought that this could lead to finding the partial sum of the series. I could prove that $$S_n=1-frac{1}{A_n^2-1}$$by mathematical induction, but I want to know whether my method can be useful for finding $S_n$ from scratch.
So my question is : Is there a way to find $S_n$ from scratch??
Also, I found that $$a_n=frac{frac{1}{A_n}}{1-frac{1}{A_n^2}}=sum_{n=1}^{infty}{frac{1}{A_n^{2n-1}}}=frac{1}{2^{1cdot2^{n-1}}}+frac{1}{2^{3cdot 2^{n-1}}}+frac{1}{2^{5cdot 2^{n-1}}}+....\
therefore sum_{n=1}^infty {a_n}=frac{1}{2^{1cdot 2^{0}}}+frac{1}{2^{3cdot 2^{0}}}+frac{1}{2^{5cdot 2^{0}}}+...\
+frac{1}{2^{1cdot 2^{1}}}+frac{1}{2^{3cdot 2^{1}}}+frac{1}{2^{5cdot 2^{1}}}+...\ +frac{1}{2^{1cdot 2^{2}}}+frac{1}{2^{3cdot 2^{2}}}+frac{1}{2^{5cdot 2^{2}}}+...
\ =sum_{n=1}^{infty}{2^{-n}}=1$$
Is this a valid way? I used the Riemann series theorem to rearrange them.
sequences-and-series
$endgroup$
|
show 1 more comment
$begingroup$
A friend of mine gave me this quiz: Where does this sum converge to?
$$sumlimits_{n=1}^{infty}{frac{2^{2^{n-1}}}{2^{2^n}-1}}$$
$a_1=frac{2}{3} , a_2=frac{4}{15}, a_3=frac{16}{255},...$and $S_1=frac{2}{3}, S_2=frac{14}{15} , S_3=frac{254}{255}, ...$
So I thought that this sum will converge to 1.
Let $$2^{2^{n-1}}=A_n, a_n=frac{A_n}{A_n^2-1}=frac{1}{2}left(frac{1}{A_n+1}+frac{1}{A_n-1}right)$$
Since $A_n = A_{n-1}^2$, I thought that this could lead to finding the partial sum of the series. I could prove that $$S_n=1-frac{1}{A_n^2-1}$$by mathematical induction, but I want to know whether my method can be useful for finding $S_n$ from scratch.
So my question is : Is there a way to find $S_n$ from scratch??
Also, I found that $$a_n=frac{frac{1}{A_n}}{1-frac{1}{A_n^2}}=sum_{n=1}^{infty}{frac{1}{A_n^{2n-1}}}=frac{1}{2^{1cdot2^{n-1}}}+frac{1}{2^{3cdot 2^{n-1}}}+frac{1}{2^{5cdot 2^{n-1}}}+....\
therefore sum_{n=1}^infty {a_n}=frac{1}{2^{1cdot 2^{0}}}+frac{1}{2^{3cdot 2^{0}}}+frac{1}{2^{5cdot 2^{0}}}+...\
+frac{1}{2^{1cdot 2^{1}}}+frac{1}{2^{3cdot 2^{1}}}+frac{1}{2^{5cdot 2^{1}}}+...\ +frac{1}{2^{1cdot 2^{2}}}+frac{1}{2^{3cdot 2^{2}}}+frac{1}{2^{5cdot 2^{2}}}+...
\ =sum_{n=1}^{infty}{2^{-n}}=1$$
Is this a valid way? I used the Riemann series theorem to rearrange them.
sequences-and-series
$endgroup$
1
$begingroup$
This is valid, since the elements are non-negative,
$endgroup$
– Bonbon
Jan 17 at 14:23
$begingroup$
@Bonbon Thx for replying!!
$endgroup$
– John. P
Jan 17 at 15:24
$begingroup$
It is also interesting to show that $$ 1 = sum_{kgeq 0}frac{2^k}{2^{2^k}+1}.$$
$endgroup$
– Jack D'Aurizio
Jan 17 at 19:19
$begingroup$
Have a look at this and replace $z=frac{1}{2}$.
$endgroup$
– rtybase
Jan 17 at 21:41
$begingroup$
Notice that $frac{2^{2^{n-1}}}{2^{2^n}-1} = frac{2^{2^{n-1}}}{(2^{2^{n-1}}-1)(2^{2^{n-1}}+1)} = frac{1}{2^{2^{n-1}}-1}-frac{1}{2^{2^n}-1} equiv b_{n-1} - b_n$ where $b_n = frac{1}{2^{2^n}-1}$. Telescoping!
$endgroup$
– Winther
Jan 17 at 23:49
|
show 1 more comment
$begingroup$
A friend of mine gave me this quiz: Where does this sum converge to?
$$sumlimits_{n=1}^{infty}{frac{2^{2^{n-1}}}{2^{2^n}-1}}$$
$a_1=frac{2}{3} , a_2=frac{4}{15}, a_3=frac{16}{255},...$and $S_1=frac{2}{3}, S_2=frac{14}{15} , S_3=frac{254}{255}, ...$
So I thought that this sum will converge to 1.
Let $$2^{2^{n-1}}=A_n, a_n=frac{A_n}{A_n^2-1}=frac{1}{2}left(frac{1}{A_n+1}+frac{1}{A_n-1}right)$$
Since $A_n = A_{n-1}^2$, I thought that this could lead to finding the partial sum of the series. I could prove that $$S_n=1-frac{1}{A_n^2-1}$$by mathematical induction, but I want to know whether my method can be useful for finding $S_n$ from scratch.
So my question is : Is there a way to find $S_n$ from scratch??
Also, I found that $$a_n=frac{frac{1}{A_n}}{1-frac{1}{A_n^2}}=sum_{n=1}^{infty}{frac{1}{A_n^{2n-1}}}=frac{1}{2^{1cdot2^{n-1}}}+frac{1}{2^{3cdot 2^{n-1}}}+frac{1}{2^{5cdot 2^{n-1}}}+....\
therefore sum_{n=1}^infty {a_n}=frac{1}{2^{1cdot 2^{0}}}+frac{1}{2^{3cdot 2^{0}}}+frac{1}{2^{5cdot 2^{0}}}+...\
+frac{1}{2^{1cdot 2^{1}}}+frac{1}{2^{3cdot 2^{1}}}+frac{1}{2^{5cdot 2^{1}}}+...\ +frac{1}{2^{1cdot 2^{2}}}+frac{1}{2^{3cdot 2^{2}}}+frac{1}{2^{5cdot 2^{2}}}+...
\ =sum_{n=1}^{infty}{2^{-n}}=1$$
Is this a valid way? I used the Riemann series theorem to rearrange them.
sequences-and-series
$endgroup$
A friend of mine gave me this quiz: Where does this sum converge to?
$$sumlimits_{n=1}^{infty}{frac{2^{2^{n-1}}}{2^{2^n}-1}}$$
$a_1=frac{2}{3} , a_2=frac{4}{15}, a_3=frac{16}{255},...$and $S_1=frac{2}{3}, S_2=frac{14}{15} , S_3=frac{254}{255}, ...$
So I thought that this sum will converge to 1.
Let $$2^{2^{n-1}}=A_n, a_n=frac{A_n}{A_n^2-1}=frac{1}{2}left(frac{1}{A_n+1}+frac{1}{A_n-1}right)$$
Since $A_n = A_{n-1}^2$, I thought that this could lead to finding the partial sum of the series. I could prove that $$S_n=1-frac{1}{A_n^2-1}$$by mathematical induction, but I want to know whether my method can be useful for finding $S_n$ from scratch.
So my question is : Is there a way to find $S_n$ from scratch??
Also, I found that $$a_n=frac{frac{1}{A_n}}{1-frac{1}{A_n^2}}=sum_{n=1}^{infty}{frac{1}{A_n^{2n-1}}}=frac{1}{2^{1cdot2^{n-1}}}+frac{1}{2^{3cdot 2^{n-1}}}+frac{1}{2^{5cdot 2^{n-1}}}+....\
therefore sum_{n=1}^infty {a_n}=frac{1}{2^{1cdot 2^{0}}}+frac{1}{2^{3cdot 2^{0}}}+frac{1}{2^{5cdot 2^{0}}}+...\
+frac{1}{2^{1cdot 2^{1}}}+frac{1}{2^{3cdot 2^{1}}}+frac{1}{2^{5cdot 2^{1}}}+...\ +frac{1}{2^{1cdot 2^{2}}}+frac{1}{2^{3cdot 2^{2}}}+frac{1}{2^{5cdot 2^{2}}}+...
\ =sum_{n=1}^{infty}{2^{-n}}=1$$
Is this a valid way? I used the Riemann series theorem to rearrange them.
sequences-and-series
sequences-and-series
edited Jan 17 at 23:37
John. P
asked Jan 17 at 14:18


John. PJohn. P
1789
1789
1
$begingroup$
This is valid, since the elements are non-negative,
$endgroup$
– Bonbon
Jan 17 at 14:23
$begingroup$
@Bonbon Thx for replying!!
$endgroup$
– John. P
Jan 17 at 15:24
$begingroup$
It is also interesting to show that $$ 1 = sum_{kgeq 0}frac{2^k}{2^{2^k}+1}.$$
$endgroup$
– Jack D'Aurizio
Jan 17 at 19:19
$begingroup$
Have a look at this and replace $z=frac{1}{2}$.
$endgroup$
– rtybase
Jan 17 at 21:41
$begingroup$
Notice that $frac{2^{2^{n-1}}}{2^{2^n}-1} = frac{2^{2^{n-1}}}{(2^{2^{n-1}}-1)(2^{2^{n-1}}+1)} = frac{1}{2^{2^{n-1}}-1}-frac{1}{2^{2^n}-1} equiv b_{n-1} - b_n$ where $b_n = frac{1}{2^{2^n}-1}$. Telescoping!
$endgroup$
– Winther
Jan 17 at 23:49
|
show 1 more comment
1
$begingroup$
This is valid, since the elements are non-negative,
$endgroup$
– Bonbon
Jan 17 at 14:23
$begingroup$
@Bonbon Thx for replying!!
$endgroup$
– John. P
Jan 17 at 15:24
$begingroup$
It is also interesting to show that $$ 1 = sum_{kgeq 0}frac{2^k}{2^{2^k}+1}.$$
$endgroup$
– Jack D'Aurizio
Jan 17 at 19:19
$begingroup$
Have a look at this and replace $z=frac{1}{2}$.
$endgroup$
– rtybase
Jan 17 at 21:41
$begingroup$
Notice that $frac{2^{2^{n-1}}}{2^{2^n}-1} = frac{2^{2^{n-1}}}{(2^{2^{n-1}}-1)(2^{2^{n-1}}+1)} = frac{1}{2^{2^{n-1}}-1}-frac{1}{2^{2^n}-1} equiv b_{n-1} - b_n$ where $b_n = frac{1}{2^{2^n}-1}$. Telescoping!
$endgroup$
– Winther
Jan 17 at 23:49
1
1
$begingroup$
This is valid, since the elements are non-negative,
$endgroup$
– Bonbon
Jan 17 at 14:23
$begingroup$
This is valid, since the elements are non-negative,
$endgroup$
– Bonbon
Jan 17 at 14:23
$begingroup$
@Bonbon Thx for replying!!
$endgroup$
– John. P
Jan 17 at 15:24
$begingroup$
@Bonbon Thx for replying!!
$endgroup$
– John. P
Jan 17 at 15:24
$begingroup$
It is also interesting to show that $$ 1 = sum_{kgeq 0}frac{2^k}{2^{2^k}+1}.$$
$endgroup$
– Jack D'Aurizio
Jan 17 at 19:19
$begingroup$
It is also interesting to show that $$ 1 = sum_{kgeq 0}frac{2^k}{2^{2^k}+1}.$$
$endgroup$
– Jack D'Aurizio
Jan 17 at 19:19
$begingroup$
Have a look at this and replace $z=frac{1}{2}$.
$endgroup$
– rtybase
Jan 17 at 21:41
$begingroup$
Have a look at this and replace $z=frac{1}{2}$.
$endgroup$
– rtybase
Jan 17 at 21:41
$begingroup$
Notice that $frac{2^{2^{n-1}}}{2^{2^n}-1} = frac{2^{2^{n-1}}}{(2^{2^{n-1}}-1)(2^{2^{n-1}}+1)} = frac{1}{2^{2^{n-1}}-1}-frac{1}{2^{2^n}-1} equiv b_{n-1} - b_n$ where $b_n = frac{1}{2^{2^n}-1}$. Telescoping!
$endgroup$
– Winther
Jan 17 at 23:49
$begingroup$
Notice that $frac{2^{2^{n-1}}}{2^{2^n}-1} = frac{2^{2^{n-1}}}{(2^{2^{n-1}}-1)(2^{2^{n-1}}+1)} = frac{1}{2^{2^{n-1}}-1}-frac{1}{2^{2^n}-1} equiv b_{n-1} - b_n$ where $b_n = frac{1}{2^{2^n}-1}$. Telescoping!
$endgroup$
– Winther
Jan 17 at 23:49
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
Here's another manipulation you could do that doesn't require any rearranging, just the simple fact that two convergent series can be added term-wise (which is a commutativity of addition plus an addition of convergent sequences statement). Let's write $$s_n = frac{2^{2^{n-1}}}{2^{2^n}-1};$$
$$a_n = frac{1}{2^{2^{n-1}}-1};$$
$$b_n = frac{1}{2^{2^{n-1}}+1};$$
$S=sum_{n=1}^infty s_n$; $A = sum_{n=1}^infty a_n$; and $B = sum_{n=1}^infty b_n$. It's easy to see that $A,B < infty$ by comparison to some simple (e.g., geometric) series. Since $s_n = a_n/2 + b_n/2$, we have that $S=A/2+B/2<infty$ and the following hold:
$$a_n = a_{n-1}/2 - b_{n-1}/2, ;;;mbox{so}$$
$$A = a_{0}/2-b_0/2 + A/2 - B/2 = 1+A/2-B/2, ;;;mbox{so}$$
$$S = A/2 + B/2 = (1+A/2-B/2)/2+B/2 = 1/2+(A/2+B/2)/2 = 1/2 + S/2,$$
which of course implies $S=1$.
$endgroup$
2
$begingroup$
How did you come up with this idea?? So brilliant!
$endgroup$
– John. P
Jan 17 at 15:57
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077032%2fwhy-does-this-sum-sum-limits-n-1-infty-frac22n-122n-1-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's another manipulation you could do that doesn't require any rearranging, just the simple fact that two convergent series can be added term-wise (which is a commutativity of addition plus an addition of convergent sequences statement). Let's write $$s_n = frac{2^{2^{n-1}}}{2^{2^n}-1};$$
$$a_n = frac{1}{2^{2^{n-1}}-1};$$
$$b_n = frac{1}{2^{2^{n-1}}+1};$$
$S=sum_{n=1}^infty s_n$; $A = sum_{n=1}^infty a_n$; and $B = sum_{n=1}^infty b_n$. It's easy to see that $A,B < infty$ by comparison to some simple (e.g., geometric) series. Since $s_n = a_n/2 + b_n/2$, we have that $S=A/2+B/2<infty$ and the following hold:
$$a_n = a_{n-1}/2 - b_{n-1}/2, ;;;mbox{so}$$
$$A = a_{0}/2-b_0/2 + A/2 - B/2 = 1+A/2-B/2, ;;;mbox{so}$$
$$S = A/2 + B/2 = (1+A/2-B/2)/2+B/2 = 1/2+(A/2+B/2)/2 = 1/2 + S/2,$$
which of course implies $S=1$.
$endgroup$
2
$begingroup$
How did you come up with this idea?? So brilliant!
$endgroup$
– John. P
Jan 17 at 15:57
add a comment |
$begingroup$
Here's another manipulation you could do that doesn't require any rearranging, just the simple fact that two convergent series can be added term-wise (which is a commutativity of addition plus an addition of convergent sequences statement). Let's write $$s_n = frac{2^{2^{n-1}}}{2^{2^n}-1};$$
$$a_n = frac{1}{2^{2^{n-1}}-1};$$
$$b_n = frac{1}{2^{2^{n-1}}+1};$$
$S=sum_{n=1}^infty s_n$; $A = sum_{n=1}^infty a_n$; and $B = sum_{n=1}^infty b_n$. It's easy to see that $A,B < infty$ by comparison to some simple (e.g., geometric) series. Since $s_n = a_n/2 + b_n/2$, we have that $S=A/2+B/2<infty$ and the following hold:
$$a_n = a_{n-1}/2 - b_{n-1}/2, ;;;mbox{so}$$
$$A = a_{0}/2-b_0/2 + A/2 - B/2 = 1+A/2-B/2, ;;;mbox{so}$$
$$S = A/2 + B/2 = (1+A/2-B/2)/2+B/2 = 1/2+(A/2+B/2)/2 = 1/2 + S/2,$$
which of course implies $S=1$.
$endgroup$
2
$begingroup$
How did you come up with this idea?? So brilliant!
$endgroup$
– John. P
Jan 17 at 15:57
add a comment |
$begingroup$
Here's another manipulation you could do that doesn't require any rearranging, just the simple fact that two convergent series can be added term-wise (which is a commutativity of addition plus an addition of convergent sequences statement). Let's write $$s_n = frac{2^{2^{n-1}}}{2^{2^n}-1};$$
$$a_n = frac{1}{2^{2^{n-1}}-1};$$
$$b_n = frac{1}{2^{2^{n-1}}+1};$$
$S=sum_{n=1}^infty s_n$; $A = sum_{n=1}^infty a_n$; and $B = sum_{n=1}^infty b_n$. It's easy to see that $A,B < infty$ by comparison to some simple (e.g., geometric) series. Since $s_n = a_n/2 + b_n/2$, we have that $S=A/2+B/2<infty$ and the following hold:
$$a_n = a_{n-1}/2 - b_{n-1}/2, ;;;mbox{so}$$
$$A = a_{0}/2-b_0/2 + A/2 - B/2 = 1+A/2-B/2, ;;;mbox{so}$$
$$S = A/2 + B/2 = (1+A/2-B/2)/2+B/2 = 1/2+(A/2+B/2)/2 = 1/2 + S/2,$$
which of course implies $S=1$.
$endgroup$
Here's another manipulation you could do that doesn't require any rearranging, just the simple fact that two convergent series can be added term-wise (which is a commutativity of addition plus an addition of convergent sequences statement). Let's write $$s_n = frac{2^{2^{n-1}}}{2^{2^n}-1};$$
$$a_n = frac{1}{2^{2^{n-1}}-1};$$
$$b_n = frac{1}{2^{2^{n-1}}+1};$$
$S=sum_{n=1}^infty s_n$; $A = sum_{n=1}^infty a_n$; and $B = sum_{n=1}^infty b_n$. It's easy to see that $A,B < infty$ by comparison to some simple (e.g., geometric) series. Since $s_n = a_n/2 + b_n/2$, we have that $S=A/2+B/2<infty$ and the following hold:
$$a_n = a_{n-1}/2 - b_{n-1}/2, ;;;mbox{so}$$
$$A = a_{0}/2-b_0/2 + A/2 - B/2 = 1+A/2-B/2, ;;;mbox{so}$$
$$S = A/2 + B/2 = (1+A/2-B/2)/2+B/2 = 1/2+(A/2+B/2)/2 = 1/2 + S/2,$$
which of course implies $S=1$.
edited Jan 17 at 15:58
answered Jan 17 at 15:49
cspruncsprun
1,54828
1,54828
2
$begingroup$
How did you come up with this idea?? So brilliant!
$endgroup$
– John. P
Jan 17 at 15:57
add a comment |
2
$begingroup$
How did you come up with this idea?? So brilliant!
$endgroup$
– John. P
Jan 17 at 15:57
2
2
$begingroup$
How did you come up with this idea?? So brilliant!
$endgroup$
– John. P
Jan 17 at 15:57
$begingroup$
How did you come up with this idea?? So brilliant!
$endgroup$
– John. P
Jan 17 at 15:57
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077032%2fwhy-does-this-sum-sum-limits-n-1-infty-frac22n-122n-1-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This is valid, since the elements are non-negative,
$endgroup$
– Bonbon
Jan 17 at 14:23
$begingroup$
@Bonbon Thx for replying!!
$endgroup$
– John. P
Jan 17 at 15:24
$begingroup$
It is also interesting to show that $$ 1 = sum_{kgeq 0}frac{2^k}{2^{2^k}+1}.$$
$endgroup$
– Jack D'Aurizio
Jan 17 at 19:19
$begingroup$
Have a look at this and replace $z=frac{1}{2}$.
$endgroup$
– rtybase
Jan 17 at 21:41
$begingroup$
Notice that $frac{2^{2^{n-1}}}{2^{2^n}-1} = frac{2^{2^{n-1}}}{(2^{2^{n-1}}-1)(2^{2^{n-1}}+1)} = frac{1}{2^{2^{n-1}}-1}-frac{1}{2^{2^n}-1} equiv b_{n-1} - b_n$ where $b_n = frac{1}{2^{2^n}-1}$. Telescoping!
$endgroup$
– Winther
Jan 17 at 23:49