Computing the variance of an estimator












0












$begingroup$


I'm having some trouble figuring out the proper estimator for the following problem.



Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator



$$ T = frac{X_1+2X_2-X_3}{2} $$



Here's what I tried:



$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$



Then, since $ Var(rY) = r^2 Var(Y) $



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$



However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?










share|cite|improve this question









$endgroup$












  • $begingroup$
    View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
    $endgroup$
    – WimC
    Jan 26 at 19:24
















0












$begingroup$


I'm having some trouble figuring out the proper estimator for the following problem.



Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator



$$ T = frac{X_1+2X_2-X_3}{2} $$



Here's what I tried:



$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$



Then, since $ Var(rY) = r^2 Var(Y) $



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$



However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?










share|cite|improve this question









$endgroup$












  • $begingroup$
    View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
    $endgroup$
    – WimC
    Jan 26 at 19:24














0












0








0





$begingroup$


I'm having some trouble figuring out the proper estimator for the following problem.



Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator



$$ T = frac{X_1+2X_2-X_3}{2} $$



Here's what I tried:



$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$



Then, since $ Var(rY) = r^2 Var(Y) $



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$



However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?










share|cite|improve this question









$endgroup$




I'm having some trouble figuring out the proper estimator for the following problem.



Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator



$$ T = frac{X_1+2X_2-X_3}{2} $$



Here's what I tried:



$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$



Then, since $ Var(rY) = r^2 Var(Y) $



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$



However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?







probability statistics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 26 at 19:09









molenzwiebelmolenzwiebel

1153




1153












  • $begingroup$
    View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
    $endgroup$
    – WimC
    Jan 26 at 19:24


















  • $begingroup$
    View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
    $endgroup$
    – WimC
    Jan 26 at 19:24
















$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24




$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24










1 Answer
1






active

oldest

votes


















1












$begingroup$

You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be



$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$



where we assume that the samples are independent.



Therefore,



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ah there's the error. Thanks!
    $endgroup$
    – molenzwiebel
    Jan 26 at 19:52











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088631%2fcomputing-the-variance-of-an-estimator%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be



$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$



where we assume that the samples are independent.



Therefore,



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ah there's the error. Thanks!
    $endgroup$
    – molenzwiebel
    Jan 26 at 19:52
















1












$begingroup$

You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be



$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$



where we assume that the samples are independent.



Therefore,



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ah there's the error. Thanks!
    $endgroup$
    – molenzwiebel
    Jan 26 at 19:52














1












1








1





$begingroup$

You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be



$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$



where we assume that the samples are independent.



Therefore,



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$






share|cite|improve this answer









$endgroup$



You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be



$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$



where we assume that the samples are independent.



Therefore,



$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 26 at 19:20









user144410user144410

1,0412719




1,0412719












  • $begingroup$
    Ah there's the error. Thanks!
    $endgroup$
    – molenzwiebel
    Jan 26 at 19:52


















  • $begingroup$
    Ah there's the error. Thanks!
    $endgroup$
    – molenzwiebel
    Jan 26 at 19:52
















$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52




$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088631%2fcomputing-the-variance-of-an-estimator%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith