Computing the variance of an estimator
$begingroup$
I'm having some trouble figuring out the proper estimator for the following problem.
Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator
$$ T = frac{X_1+2X_2-X_3}{2} $$
Here's what I tried:
$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$
Then, since $ Var(rY) = r^2 Var(Y) $
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$
However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?
probability statistics
$endgroup$
add a comment |
$begingroup$
I'm having some trouble figuring out the proper estimator for the following problem.
Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator
$$ T = frac{X_1+2X_2-X_3}{2} $$
Here's what I tried:
$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$
Then, since $ Var(rY) = r^2 Var(Y) $
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$
However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?
probability statistics
$endgroup$
$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24
add a comment |
$begingroup$
I'm having some trouble figuring out the proper estimator for the following problem.
Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator
$$ T = frac{X_1+2X_2-X_3}{2} $$
Here's what I tried:
$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$
Then, since $ Var(rY) = r^2 Var(Y) $
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$
However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?
probability statistics
$endgroup$
I'm having some trouble figuring out the proper estimator for the following problem.
Given three random samples $ X_1 $, $ X_2 $ and $ X_3 $ from a normal distribution $ N(mu, sigma^2) $, compute the variance of the estimator
$$ T = frac{X_1+2X_2-X_3}{2} $$
Here's what I tried:
$$ T = frac{X_1+2X_2-X_3}{2} = frac{1}{2}X_1 + X_2 - frac{1}{2}X_3 $$
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) - Var(frac{1}{2}X_3) $$
Then, since $ Var(rY) = r^2 Var(Y) $
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 - frac{1}{4}sigma^2 = sigma^2 $$
However, the correct answer should be $ frac{3}{2}sigma^2 $. What am I doing wrong?
probability statistics
probability statistics
asked Jan 26 at 19:09


molenzwiebelmolenzwiebel
1153
1153
$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24
add a comment |
$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24
$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24
$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$
where we assume that the samples are independent.
Therefore,
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$
$endgroup$
$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088631%2fcomputing-the-variance-of-an-estimator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$
where we assume that the samples are independent.
Therefore,
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$
$endgroup$
$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52
add a comment |
$begingroup$
You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$
where we assume that the samples are independent.
Therefore,
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$
$endgroup$
$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52
add a comment |
$begingroup$
You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$
where we assume that the samples are independent.
Therefore,
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$
$endgroup$
You have a sign mistake. For any real random variable $X$, it holds that $Var(X) = Var(-X)$. So your calculation should be
$$ Var(T) = Var(frac{1}{2}X_1) + Var(X_2) + Var(frac{1}{2}X_3) $$
where we assume that the samples are independent.
Therefore,
$$ Var(T) = frac{1}{4}sigma^2 + sigma^2 + frac{1}{4}sigma^2 = 1.5sigma^2 $$
answered Jan 26 at 19:20
user144410user144410
1,0412719
1,0412719
$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52
add a comment |
$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52
$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52
$begingroup$
Ah there's the error. Thanks!
$endgroup$
– molenzwiebel
Jan 26 at 19:52
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088631%2fcomputing-the-variance-of-an-estimator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
View it as $tfrac12 X_1+X_2+(-tfrac12 X_3)$ and try again.
$endgroup$
– WimC
Jan 26 at 19:24