Determine the sequence generated by a generating function












1












$begingroup$


$A(z)=2z-1+frac{1}{2z-2z^2}$



I have no clue how to solve this, I tried looking at other examples but I am just stuck, could anyone be so kind and explain how to solve this step by step?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    What do you mean by solve? You only wrote down a function.
    $endgroup$
    – Klaus
    Jan 26 at 23:06










  • $begingroup$
    Do you mean finding the inverse?
    $endgroup$
    – Math Lover
    Jan 26 at 23:11










  • $begingroup$
    I guess thats finding the inverse. Sorry, wasn't sure how to translate it from my language.
    $endgroup$
    – Gorosso
    Jan 26 at 23:30


















1












$begingroup$


$A(z)=2z-1+frac{1}{2z-2z^2}$



I have no clue how to solve this, I tried looking at other examples but I am just stuck, could anyone be so kind and explain how to solve this step by step?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    What do you mean by solve? You only wrote down a function.
    $endgroup$
    – Klaus
    Jan 26 at 23:06










  • $begingroup$
    Do you mean finding the inverse?
    $endgroup$
    – Math Lover
    Jan 26 at 23:11










  • $begingroup$
    I guess thats finding the inverse. Sorry, wasn't sure how to translate it from my language.
    $endgroup$
    – Gorosso
    Jan 26 at 23:30
















1












1








1





$begingroup$


$A(z)=2z-1+frac{1}{2z-2z^2}$



I have no clue how to solve this, I tried looking at other examples but I am just stuck, could anyone be so kind and explain how to solve this step by step?










share|cite|improve this question









$endgroup$




$A(z)=2z-1+frac{1}{2z-2z^2}$



I have no clue how to solve this, I tried looking at other examples but I am just stuck, could anyone be so kind and explain how to solve this step by step?







discrete-mathematics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 26 at 22:58









GorossoGorosso

315




315








  • 1




    $begingroup$
    What do you mean by solve? You only wrote down a function.
    $endgroup$
    – Klaus
    Jan 26 at 23:06










  • $begingroup$
    Do you mean finding the inverse?
    $endgroup$
    – Math Lover
    Jan 26 at 23:11










  • $begingroup$
    I guess thats finding the inverse. Sorry, wasn't sure how to translate it from my language.
    $endgroup$
    – Gorosso
    Jan 26 at 23:30
















  • 1




    $begingroup$
    What do you mean by solve? You only wrote down a function.
    $endgroup$
    – Klaus
    Jan 26 at 23:06










  • $begingroup$
    Do you mean finding the inverse?
    $endgroup$
    – Math Lover
    Jan 26 at 23:11










  • $begingroup$
    I guess thats finding the inverse. Sorry, wasn't sure how to translate it from my language.
    $endgroup$
    – Gorosso
    Jan 26 at 23:30










1




1




$begingroup$
What do you mean by solve? You only wrote down a function.
$endgroup$
– Klaus
Jan 26 at 23:06




$begingroup$
What do you mean by solve? You only wrote down a function.
$endgroup$
– Klaus
Jan 26 at 23:06












$begingroup$
Do you mean finding the inverse?
$endgroup$
– Math Lover
Jan 26 at 23:11




$begingroup$
Do you mean finding the inverse?
$endgroup$
– Math Lover
Jan 26 at 23:11












$begingroup$
I guess thats finding the inverse. Sorry, wasn't sure how to translate it from my language.
$endgroup$
– Gorosso
Jan 26 at 23:30






$begingroup$
I guess thats finding the inverse. Sorry, wasn't sure how to translate it from my language.
$endgroup$
– Gorosso
Jan 26 at 23:30












1 Answer
1






active

oldest

votes


















1












$begingroup$

If you want to see the generating function:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=2z-1+frac1{2z}frac{1}{1-z}\
&=2z-1+frac1{2z}sum_{n=0}^{infty} z^n\
&=2z-1+frac1{2z}+sum_{n=1}^{infty} frac{z^{n-1}}{2}\
&=2z-1+frac1{2z}+sum_{n=0}^{infty} frac{z^{n}}{2}\
&=2z-1+frac1{2z}+frac12+frac{z}{2}+sum_{n=2}^{infty} frac{z^{n}}{2}\
&=frac53 z-frac12+frac1{2z}+sum_{n=2}^{infty} frac{z^{n}}{2}\
end{array}
$



If you want to invert the function,
that is,
find $z$ in terms of $A$:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=frac{(2z-1)(2z-2z^2)+1}{2z-2z^2}\
&=-frac{4 z^3 - 6 z^2 + 2 z - 1
}{2z-2z^2}\
end{array}
$



so
$-A(2z-2z^2)
=4 z^3 - 6 z^2 + 2 z - 1
$

or
$4 z^3 - (2A+6) z^2 + (2a+2) z - 1
=0
$
.



Wolfy gives some very complicated expressions
for $z$ in terms of $A$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Marty, do you mean Wolfram when you say Wolfy? can you please provide a link to their app.
    $endgroup$
    – user25406
    Jan 27 at 13:11






  • 1




    $begingroup$
    Yep. Look for Wolfram Alpha.
    $endgroup$
    – marty cohen
    Jan 27 at 17:45










  • $begingroup$
    How does $z^n$ turn into $frac{z^{n-1}}{2}$ in fourth row?
    $endgroup$
    – Gorosso
    Feb 6 at 20:15










  • $begingroup$
    $z^n(frac1{2z})$.
    $endgroup$
    – marty cohen
    Feb 6 at 22:31













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088889%2fdetermine-the-sequence-generated-by-a-generating-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

If you want to see the generating function:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=2z-1+frac1{2z}frac{1}{1-z}\
&=2z-1+frac1{2z}sum_{n=0}^{infty} z^n\
&=2z-1+frac1{2z}+sum_{n=1}^{infty} frac{z^{n-1}}{2}\
&=2z-1+frac1{2z}+sum_{n=0}^{infty} frac{z^{n}}{2}\
&=2z-1+frac1{2z}+frac12+frac{z}{2}+sum_{n=2}^{infty} frac{z^{n}}{2}\
&=frac53 z-frac12+frac1{2z}+sum_{n=2}^{infty} frac{z^{n}}{2}\
end{array}
$



If you want to invert the function,
that is,
find $z$ in terms of $A$:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=frac{(2z-1)(2z-2z^2)+1}{2z-2z^2}\
&=-frac{4 z^3 - 6 z^2 + 2 z - 1
}{2z-2z^2}\
end{array}
$



so
$-A(2z-2z^2)
=4 z^3 - 6 z^2 + 2 z - 1
$

or
$4 z^3 - (2A+6) z^2 + (2a+2) z - 1
=0
$
.



Wolfy gives some very complicated expressions
for $z$ in terms of $A$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Marty, do you mean Wolfram when you say Wolfy? can you please provide a link to their app.
    $endgroup$
    – user25406
    Jan 27 at 13:11






  • 1




    $begingroup$
    Yep. Look for Wolfram Alpha.
    $endgroup$
    – marty cohen
    Jan 27 at 17:45










  • $begingroup$
    How does $z^n$ turn into $frac{z^{n-1}}{2}$ in fourth row?
    $endgroup$
    – Gorosso
    Feb 6 at 20:15










  • $begingroup$
    $z^n(frac1{2z})$.
    $endgroup$
    – marty cohen
    Feb 6 at 22:31


















1












$begingroup$

If you want to see the generating function:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=2z-1+frac1{2z}frac{1}{1-z}\
&=2z-1+frac1{2z}sum_{n=0}^{infty} z^n\
&=2z-1+frac1{2z}+sum_{n=1}^{infty} frac{z^{n-1}}{2}\
&=2z-1+frac1{2z}+sum_{n=0}^{infty} frac{z^{n}}{2}\
&=2z-1+frac1{2z}+frac12+frac{z}{2}+sum_{n=2}^{infty} frac{z^{n}}{2}\
&=frac53 z-frac12+frac1{2z}+sum_{n=2}^{infty} frac{z^{n}}{2}\
end{array}
$



If you want to invert the function,
that is,
find $z$ in terms of $A$:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=frac{(2z-1)(2z-2z^2)+1}{2z-2z^2}\
&=-frac{4 z^3 - 6 z^2 + 2 z - 1
}{2z-2z^2}\
end{array}
$



so
$-A(2z-2z^2)
=4 z^3 - 6 z^2 + 2 z - 1
$

or
$4 z^3 - (2A+6) z^2 + (2a+2) z - 1
=0
$
.



Wolfy gives some very complicated expressions
for $z$ in terms of $A$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Marty, do you mean Wolfram when you say Wolfy? can you please provide a link to their app.
    $endgroup$
    – user25406
    Jan 27 at 13:11






  • 1




    $begingroup$
    Yep. Look for Wolfram Alpha.
    $endgroup$
    – marty cohen
    Jan 27 at 17:45










  • $begingroup$
    How does $z^n$ turn into $frac{z^{n-1}}{2}$ in fourth row?
    $endgroup$
    – Gorosso
    Feb 6 at 20:15










  • $begingroup$
    $z^n(frac1{2z})$.
    $endgroup$
    – marty cohen
    Feb 6 at 22:31
















1












1








1





$begingroup$

If you want to see the generating function:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=2z-1+frac1{2z}frac{1}{1-z}\
&=2z-1+frac1{2z}sum_{n=0}^{infty} z^n\
&=2z-1+frac1{2z}+sum_{n=1}^{infty} frac{z^{n-1}}{2}\
&=2z-1+frac1{2z}+sum_{n=0}^{infty} frac{z^{n}}{2}\
&=2z-1+frac1{2z}+frac12+frac{z}{2}+sum_{n=2}^{infty} frac{z^{n}}{2}\
&=frac53 z-frac12+frac1{2z}+sum_{n=2}^{infty} frac{z^{n}}{2}\
end{array}
$



If you want to invert the function,
that is,
find $z$ in terms of $A$:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=frac{(2z-1)(2z-2z^2)+1}{2z-2z^2}\
&=-frac{4 z^3 - 6 z^2 + 2 z - 1
}{2z-2z^2}\
end{array}
$



so
$-A(2z-2z^2)
=4 z^3 - 6 z^2 + 2 z - 1
$

or
$4 z^3 - (2A+6) z^2 + (2a+2) z - 1
=0
$
.



Wolfy gives some very complicated expressions
for $z$ in terms of $A$.






share|cite|improve this answer









$endgroup$



If you want to see the generating function:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=2z-1+frac1{2z}frac{1}{1-z}\
&=2z-1+frac1{2z}sum_{n=0}^{infty} z^n\
&=2z-1+frac1{2z}+sum_{n=1}^{infty} frac{z^{n-1}}{2}\
&=2z-1+frac1{2z}+sum_{n=0}^{infty} frac{z^{n}}{2}\
&=2z-1+frac1{2z}+frac12+frac{z}{2}+sum_{n=2}^{infty} frac{z^{n}}{2}\
&=frac53 z-frac12+frac1{2z}+sum_{n=2}^{infty} frac{z^{n}}{2}\
end{array}
$



If you want to invert the function,
that is,
find $z$ in terms of $A$:



$begin{array}\
A(z)
&=2z-1+frac{1}{2z-2z^2}\
&=frac{(2z-1)(2z-2z^2)+1}{2z-2z^2}\
&=-frac{4 z^3 - 6 z^2 + 2 z - 1
}{2z-2z^2}\
end{array}
$



so
$-A(2z-2z^2)
=4 z^3 - 6 z^2 + 2 z - 1
$

or
$4 z^3 - (2A+6) z^2 + (2a+2) z - 1
=0
$
.



Wolfy gives some very complicated expressions
for $z$ in terms of $A$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 27 at 0:30









marty cohenmarty cohen

74.5k549129




74.5k549129












  • $begingroup$
    Marty, do you mean Wolfram when you say Wolfy? can you please provide a link to their app.
    $endgroup$
    – user25406
    Jan 27 at 13:11






  • 1




    $begingroup$
    Yep. Look for Wolfram Alpha.
    $endgroup$
    – marty cohen
    Jan 27 at 17:45










  • $begingroup$
    How does $z^n$ turn into $frac{z^{n-1}}{2}$ in fourth row?
    $endgroup$
    – Gorosso
    Feb 6 at 20:15










  • $begingroup$
    $z^n(frac1{2z})$.
    $endgroup$
    – marty cohen
    Feb 6 at 22:31




















  • $begingroup$
    Marty, do you mean Wolfram when you say Wolfy? can you please provide a link to their app.
    $endgroup$
    – user25406
    Jan 27 at 13:11






  • 1




    $begingroup$
    Yep. Look for Wolfram Alpha.
    $endgroup$
    – marty cohen
    Jan 27 at 17:45










  • $begingroup$
    How does $z^n$ turn into $frac{z^{n-1}}{2}$ in fourth row?
    $endgroup$
    – Gorosso
    Feb 6 at 20:15










  • $begingroup$
    $z^n(frac1{2z})$.
    $endgroup$
    – marty cohen
    Feb 6 at 22:31


















$begingroup$
Marty, do you mean Wolfram when you say Wolfy? can you please provide a link to their app.
$endgroup$
– user25406
Jan 27 at 13:11




$begingroup$
Marty, do you mean Wolfram when you say Wolfy? can you please provide a link to their app.
$endgroup$
– user25406
Jan 27 at 13:11




1




1




$begingroup$
Yep. Look for Wolfram Alpha.
$endgroup$
– marty cohen
Jan 27 at 17:45




$begingroup$
Yep. Look for Wolfram Alpha.
$endgroup$
– marty cohen
Jan 27 at 17:45












$begingroup$
How does $z^n$ turn into $frac{z^{n-1}}{2}$ in fourth row?
$endgroup$
– Gorosso
Feb 6 at 20:15




$begingroup$
How does $z^n$ turn into $frac{z^{n-1}}{2}$ in fourth row?
$endgroup$
– Gorosso
Feb 6 at 20:15












$begingroup$
$z^n(frac1{2z})$.
$endgroup$
– marty cohen
Feb 6 at 22:31






$begingroup$
$z^n(frac1{2z})$.
$endgroup$
– marty cohen
Feb 6 at 22:31




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088889%2fdetermine-the-sequence-generated-by-a-generating-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]