How to prove that a delta function belongs to the Besov space $B^{-1}$?












5












$begingroup$


$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$



I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.



First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.



The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$

Here $F$ is the Fourier transform operator.



I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$

But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    I would appreciate even partial solutions or just some useful hints.
    $endgroup$
    – Oleg
    Oct 15 '18 at 14:11










  • $begingroup$
    You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
    $endgroup$
    – Calvin Khor
    Oct 24 '18 at 9:34
















5












$begingroup$


$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$



I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.



First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.



The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$

Here $F$ is the Fourier transform operator.



I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$

But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    I would appreciate even partial solutions or just some useful hints.
    $endgroup$
    – Oleg
    Oct 15 '18 at 14:11










  • $begingroup$
    You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
    $endgroup$
    – Calvin Khor
    Oct 24 '18 at 9:34














5












5








5


1



$begingroup$


$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$



I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.



First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.



The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$

Here $F$ is the Fourier transform operator.



I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$

But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$










share|cite|improve this question











$endgroup$




$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$



I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.



First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.



The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$

Here $F$ is the Fourier transform operator.



I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$

But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$







functional-analysis dirac-delta besov-space






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Oct 15 '18 at 14:10







Oleg

















asked Oct 11 '18 at 14:30









OlegOleg

301212




301212












  • $begingroup$
    I would appreciate even partial solutions or just some useful hints.
    $endgroup$
    – Oleg
    Oct 15 '18 at 14:11










  • $begingroup$
    You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
    $endgroup$
    – Calvin Khor
    Oct 24 '18 at 9:34


















  • $begingroup$
    I would appreciate even partial solutions or just some useful hints.
    $endgroup$
    – Oleg
    Oct 15 '18 at 14:11










  • $begingroup$
    You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
    $endgroup$
    – Calvin Khor
    Oct 24 '18 at 9:34
















$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11




$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11












$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34




$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34










1 Answer
1






active

oldest

votes


















2












$begingroup$

Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$



Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so



$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.



In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (i missed a minus sign that gave a silly result...this should be fixed now)
    $endgroup$
    – Calvin Khor
    Oct 15 '18 at 17:06











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2951432%2fhow-to-prove-that-a-delta-function-belongs-to-the-besov-space-b-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$



Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so



$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.



In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (i missed a minus sign that gave a silly result...this should be fixed now)
    $endgroup$
    – Calvin Khor
    Oct 15 '18 at 17:06
















2












$begingroup$

Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$



Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so



$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.



In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (i missed a minus sign that gave a silly result...this should be fixed now)
    $endgroup$
    – Calvin Khor
    Oct 15 '18 at 17:06














2












2








2





$begingroup$

Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$



Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so



$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.



In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.






share|cite|improve this answer











$endgroup$



Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$



Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so



$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.



In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Oct 17 '18 at 16:27

























answered Oct 15 '18 at 14:18









Calvin KhorCalvin Khor

12.4k21439




12.4k21439












  • $begingroup$
    (i missed a minus sign that gave a silly result...this should be fixed now)
    $endgroup$
    – Calvin Khor
    Oct 15 '18 at 17:06


















  • $begingroup$
    (i missed a minus sign that gave a silly result...this should be fixed now)
    $endgroup$
    – Calvin Khor
    Oct 15 '18 at 17:06
















$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06




$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2951432%2fhow-to-prove-that-a-delta-function-belongs-to-the-besov-space-b-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$