How to prove that a delta function belongs to the Besov space $B^{-1}$?
$begingroup$
$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$
I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.
First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.
The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$
Here $F$ is the Fourier transform operator.
I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$
But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$
functional-analysis dirac-delta besov-space
$endgroup$
add a comment |
$begingroup$
$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$
I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.
First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.
The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$
Here $F$ is the Fourier transform operator.
I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$
But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$
functional-analysis dirac-delta besov-space
$endgroup$
$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11
$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34
add a comment |
$begingroup$
$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$
I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.
First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.
The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$
Here $F$ is the Fourier transform operator.
I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$
But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$
functional-analysis dirac-delta besov-space
$endgroup$
$defR{mathbb{R}}$
$DeclareMathOperator{supp}{supp}$
I am trying to understand the definition of the Besov space and to prove that the delta function in $R^1$. However I got stuck.
First, let us recall that a sequence of smooth functions ${phi_i}_{ige-1}$ is called a partition of unity if $sum_{i=-1}^infty phi_i=1$, $supp(phi_{-1})subset{xcolon |x|le 2}$; $supp(phi_{i})subset{xcolon 2^{i-1}le |x|le 2^{i+1}}$.
The Besov space $B^s_{p,q}$, where $sinR$, $p,qge1$ is defined as the collection of all functions $f$ such that
$$
|f|_{p,q}^s:=|(2^{sj}|F^{-1}phi_j Ff|_{L_p})_{jge-1}|_{l_q}<infty.
$$
Here $F$ is the Fourier transform operator.
I would like to prove that for any fixed $xinR$ the delta function $delta_x$ is in $B^{-1}_{infty,infty}$. Clearly,
$$
Fdelta_x(lambda)=e^{ilambda x}.
$$
But now I am confused. How should we estimate
$$
|F^{-1}phi_j e^{ilambda x}|_{L_infty}?
$$
functional-analysis dirac-delta besov-space
functional-analysis dirac-delta besov-space
edited Oct 15 '18 at 14:10
Oleg
asked Oct 11 '18 at 14:30
OlegOleg
301212
301212
$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11
$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34
add a comment |
$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11
$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34
$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11
$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11
$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34
$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$
Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so
$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.
In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.
$endgroup$
$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2951432%2fhow-to-prove-that-a-delta-function-belongs-to-the-besov-space-b-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$
Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so
$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.
In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.
$endgroup$
$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06
add a comment |
$begingroup$
Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$
Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so
$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.
In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.
$endgroup$
$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06
add a comment |
$begingroup$
Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$
Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so
$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.
In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.
$endgroup$
Firstly, the norm doesn't depend on $x$, due to the shift property $ mathscr F_y [u(y-x)](lambda)=mathscr F[u](lambda)e^{ilambda x},$ i.e. $$mathscr F^{-1}_lambda[phi_j(lambda) e^{ilambda x}](y)=mathscr F^{-1}_lambda [phi_j(lambda)](y-x).$$ So
$$|delta_x|_{B^s_{infty,infty}} = sup_j 2^{sj}| mathscr F^{-1}phi_j(y-x) |_{L^infty_y(mathbb R)} = sup_{j} 2^{sj}|F^{-1}phi_j|_{L^infty(mathbb R)}. $$
Secondly, recall that the $phi_j$ for a Littlewood-Paley decomposition are defined (for $j> -1$) via rescalings of a smooth function $phi$ supported on some annulus,
$$ phi_j(lambda) = phi(2^{-j}lambda)$$
Then the scaling property of the Fourier transform gives $F^{-1}[phi_j](y) = 2^{j} F^{-1}[phi](2^{j} y)$, and so
$$ |delta_x|_{B^s_{infty,infty}} = max left( |F^{-1}[phi_{-1}]|_{L^infty}2^{-s} , |F^{-1}[phi]|_{L^infty}sup_{j> -1} 2^{(s+1)j}right)$$
this is finite as long as $sle- 1$; therefore, $delta_x in B^s_{infty,infty}$ for $sle -1$.
In fact, since the scaling property of the Fourier transform in $d$ dimensions is
$$mathscr F [u(Ky)](lambda) = frac1{K^d}mathscr F [u](lambda/K) $$
we can also verify with virtually no additional effort that
$$|delta_x|_{B^s_{p,infty}}=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , sup_{j> -1}|F^{-1}[phi](2^jy)|_{L^p_y} 2^{(s+d)j}right)\=max left( |F^{-1}[phi_{-1}]|_{L^p}2^{-s} , |F^{-1}[phi]|_{L^p}sup_{j> -1} 2^{(s+d-d/p)j}right)$$
using the scaling property of $L^p$ norms
$$ int_{mathbb R^d} |u(ky)|^p dy = k^{-d}int_{mathbb R^d} |u|^p $$That is, $ delta_x in B^{-d+d/p}_{p,infty}(mathbb R^d)$ for every $pin[1,infty]$, as can be found in e.g. the introduction of this paper by Prof. Hairer.
edited Oct 17 '18 at 16:27
answered Oct 15 '18 at 14:18
Calvin KhorCalvin Khor
12.4k21439
12.4k21439
$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06
add a comment |
$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06
$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06
$begingroup$
(i missed a minus sign that gave a silly result...this should be fixed now)
$endgroup$
– Calvin Khor
Oct 15 '18 at 17:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2951432%2fhow-to-prove-that-a-delta-function-belongs-to-the-besov-space-b-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I would appreciate even partial solutions or just some useful hints.
$endgroup$
– Oleg
Oct 15 '18 at 14:11
$begingroup$
You've been around but you have let the bounty expire and you haven't accepted my answer. Can I ask you to tell me how to improve it to your satisfaction?
$endgroup$
– Calvin Khor
Oct 24 '18 at 9:34