Convergence in $ell^p$












1












$begingroup$



Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?



(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$




I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$



So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?



Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
    $endgroup$
    – Giuseppe Negro
    Jan 21 at 10:25












  • $begingroup$
    You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
    $endgroup$
    – Mindlack
    Jan 21 at 10:27










  • $begingroup$
    @GiuseppeNegro: $p leq 4/3$ . Thanks!
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32
















1












$begingroup$



Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?



(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$




I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$



So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?



Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
    $endgroup$
    – Giuseppe Negro
    Jan 21 at 10:25












  • $begingroup$
    You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
    $endgroup$
    – Mindlack
    Jan 21 at 10:27










  • $begingroup$
    @GiuseppeNegro: $p leq 4/3$ . Thanks!
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32














1












1








1





$begingroup$



Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?



(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$




I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$



So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?



Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?










share|cite|improve this question











$endgroup$





Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?



(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$




I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$



So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?



Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?







convergence lp-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 10:25







Chinnapparaj R

















asked Jan 21 at 10:22









Chinnapparaj RChinnapparaj R

5,6932928




5,6932928












  • $begingroup$
    Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
    $endgroup$
    – Giuseppe Negro
    Jan 21 at 10:25












  • $begingroup$
    You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
    $endgroup$
    – Mindlack
    Jan 21 at 10:27










  • $begingroup$
    @GiuseppeNegro: $p leq 4/3$ . Thanks!
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32


















  • $begingroup$
    Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
    $endgroup$
    – Giuseppe Negro
    Jan 21 at 10:25












  • $begingroup$
    You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
    $endgroup$
    – Mindlack
    Jan 21 at 10:27










  • $begingroup$
    @GiuseppeNegro: $p leq 4/3$ . Thanks!
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32
















$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25






$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25














$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27




$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27












$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32




$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32










1 Answer
1






active

oldest

votes


















2












$begingroup$

The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32






  • 1




    $begingroup$
    @ChinnapparajR Yes, that is right.
    $endgroup$
    – Kavi Rama Murthy
    Jan 21 at 10:34











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081714%2fconvergence-in-ellp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32






  • 1




    $begingroup$
    @ChinnapparajR Yes, that is right.
    $endgroup$
    – Kavi Rama Murthy
    Jan 21 at 10:34
















2












$begingroup$

The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32






  • 1




    $begingroup$
    @ChinnapparajR Yes, that is right.
    $endgroup$
    – Kavi Rama Murthy
    Jan 21 at 10:34














2












2








2





$begingroup$

The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$






share|cite|improve this answer









$endgroup$



The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 21 at 10:28









Kavi Rama MurthyKavi Rama Murthy

65.4k42766




65.4k42766












  • $begingroup$
    Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32






  • 1




    $begingroup$
    @ChinnapparajR Yes, that is right.
    $endgroup$
    – Kavi Rama Murthy
    Jan 21 at 10:34


















  • $begingroup$
    Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
    $endgroup$
    – Chinnapparaj R
    Jan 21 at 10:32






  • 1




    $begingroup$
    @ChinnapparajR Yes, that is right.
    $endgroup$
    – Kavi Rama Murthy
    Jan 21 at 10:34
















$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32




$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32




1




1




$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34




$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081714%2fconvergence-in-ellp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith