Convergence in $ell^p$
$begingroup$
Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?
(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$
I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$
So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?
Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?
convergence lp-spaces
$endgroup$
add a comment |
$begingroup$
Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?
(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$
I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$
So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?
Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?
convergence lp-spaces
$endgroup$
$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25
$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27
$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
add a comment |
$begingroup$
Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?
(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$
I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$
So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?
Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?
convergence lp-spaces
$endgroup$
Let $0neq x=(x_1,x_2,cdots,x_n,cdots) inell^4$. For which of the following values of $p$, the series $$sum_{i=1}^infty x_iy_i$$ converges for every $y=(y_1,y_2,cdots,y_n,cdots) inell^p $ ?
(a) $p=1$ $hspace{2cm}$ (b) $p=2$$hspace{2cm}$ (c) $p=3$ $hspace{2cm}$ (d) $p=4$
I know this result: For any $a=(a_i) in ell^q$, the series $sum_{i=1}^infty a_iy_i$ converges absolutely, for all $y=(y_i) in ell^p$ where $q in (1,infty]$ and $p in [1,infty)$ with $frac{1}{p}+frac{1}{q}=1$
So by above result, $sum_{i=1}^infty x_iy_i$ converges absolutely, for all $y=(y_i) in largeell^frac{4}{3}$. But how about these four options ?
Here $$ sum_{i=1}^infty vert x_iy_i vert leq vertvert x vert vert_{largeell^4}vertvert y vert vert_{largeell^p} $$ How to choose suitable $p$ to make the RHS to be small? Any Guidance please?
convergence lp-spaces
convergence lp-spaces
edited Jan 21 at 10:25
Chinnapparaj R
asked Jan 21 at 10:22


Chinnapparaj RChinnapparaj R
5,6932928
5,6932928
$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25
$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27
$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
add a comment |
$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25
$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27
$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25
$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25
$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27
$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27
$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$
$endgroup$
$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
1
$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081714%2fconvergence-in-ellp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$
$endgroup$
$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
1
$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34
add a comment |
$begingroup$
The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$
$endgroup$
$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
1
$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34
add a comment |
$begingroup$
The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$
$endgroup$
The correct answer is 1). Use the fact that $p leq frac 4 3 $ and $(y_n) in ell^{p}$ implies $(y_n) in ell^{4/3}$
answered Jan 21 at 10:28


Kavi Rama MurthyKavi Rama Murthy
65.4k42766
65.4k42766
$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
1
$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34
add a comment |
$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
1
$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34
$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
$begingroup$
Thanks! So this question is a simple application of $ell^p subset ell^q$ whenever $p leq q$ and the mentioned result in OP. Am i right?
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32
1
1
$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34
$begingroup$
@ChinnapparajR Yes, that is right.
$endgroup$
– Kavi Rama Murthy
Jan 21 at 10:34
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081714%2fconvergence-in-ellp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Recall that $ell^{p}subset ell^{4/3}$ for some values of $p$...which ones?
$endgroup$
– Giuseppe Negro
Jan 21 at 10:25
$begingroup$
You should try and refine your result by saying that the series converges for all $y in ell^p$ iff $p^{-1}+q^{-1} geq 1$.
$endgroup$
– Mindlack
Jan 21 at 10:27
$begingroup$
@GiuseppeNegro: $p leq 4/3$ . Thanks!
$endgroup$
– Chinnapparaj R
Jan 21 at 10:32