Determine the quotient and the remainder of the division:
$begingroup$
Determine the quotient and the remainder of the division:
($1$).of $fin mathbb K[x]$ by $x^2-a$ in $mathbb K[x],$Where
$mathbb K$ is a field.
($2$).of $x^m-1$ by $x^n-1$ in $mathbb Z[x],$for $m,ninmathbb N^*$
.
Results used
Division Algorithm for $mathbb F[x]$:Let $mathbb F$ be a field and let $f(x)$ and $g(x)mathbb F[x]$ with $g
(x)neq 0.$Then thete exists unique polynomials $q(x),r(x) in mathbb F[x]$ such that $f(x)=g(x)q(x)+r(x)$ and either $r(x)=0$ or $deg(r(x))<deg(g(x)).$
Remainder theorem:Let $mathbb F$ be a field,$ain mathbb F,$ and $f(x)in mathbb F[x].$Then $f(a)$ is the remainder in the division of $f(x)$ by $x-a.$
Solution of $(1)$
By Remainder theorem,remainder,$r(x)=f(pmsqrt a)$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^2-a)q(x)+f(pmsqrt a)implies q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}.$
Hence quotient and remainder are $r(x)=f(pmsqrt a)$,$q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}$
Is it correct?
Solution of $(2)$
On comparing with the division algorithm, we have
$f(x)=x^m-1,g(x)=x^n-1$
Now by remainder theorem ,we have $r(x)=f(1^{1/n})=f(1)=0$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^n-1)q(x)+f(1^{1/n})implies q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}.$
Hence quotient and remainder are $r(x)=f(1^{1/n})=f(1)=0$,$q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}$
How do we guarantee that $r(x),q(x)in mathbb Z[x]?$
divisibility integers principal-ideal-domains euclidean-algorithm
$endgroup$
add a comment |
$begingroup$
Determine the quotient and the remainder of the division:
($1$).of $fin mathbb K[x]$ by $x^2-a$ in $mathbb K[x],$Where
$mathbb K$ is a field.
($2$).of $x^m-1$ by $x^n-1$ in $mathbb Z[x],$for $m,ninmathbb N^*$
.
Results used
Division Algorithm for $mathbb F[x]$:Let $mathbb F$ be a field and let $f(x)$ and $g(x)mathbb F[x]$ with $g
(x)neq 0.$Then thete exists unique polynomials $q(x),r(x) in mathbb F[x]$ such that $f(x)=g(x)q(x)+r(x)$ and either $r(x)=0$ or $deg(r(x))<deg(g(x)).$
Remainder theorem:Let $mathbb F$ be a field,$ain mathbb F,$ and $f(x)in mathbb F[x].$Then $f(a)$ is the remainder in the division of $f(x)$ by $x-a.$
Solution of $(1)$
By Remainder theorem,remainder,$r(x)=f(pmsqrt a)$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^2-a)q(x)+f(pmsqrt a)implies q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}.$
Hence quotient and remainder are $r(x)=f(pmsqrt a)$,$q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}$
Is it correct?
Solution of $(2)$
On comparing with the division algorithm, we have
$f(x)=x^m-1,g(x)=x^n-1$
Now by remainder theorem ,we have $r(x)=f(1^{1/n})=f(1)=0$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^n-1)q(x)+f(1^{1/n})implies q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}.$
Hence quotient and remainder are $r(x)=f(1^{1/n})=f(1)=0$,$q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}$
How do we guarantee that $r(x),q(x)in mathbb Z[x]?$
divisibility integers principal-ideal-domains euclidean-algorithm
$endgroup$
$begingroup$
For (1), it seems to me that the remainder is not what you say: for instance when $f(x)=x^2+x-a$, obviously we have $r(x)=x$.
$endgroup$
– René Gy
Jan 27 at 12:15
add a comment |
$begingroup$
Determine the quotient and the remainder of the division:
($1$).of $fin mathbb K[x]$ by $x^2-a$ in $mathbb K[x],$Where
$mathbb K$ is a field.
($2$).of $x^m-1$ by $x^n-1$ in $mathbb Z[x],$for $m,ninmathbb N^*$
.
Results used
Division Algorithm for $mathbb F[x]$:Let $mathbb F$ be a field and let $f(x)$ and $g(x)mathbb F[x]$ with $g
(x)neq 0.$Then thete exists unique polynomials $q(x),r(x) in mathbb F[x]$ such that $f(x)=g(x)q(x)+r(x)$ and either $r(x)=0$ or $deg(r(x))<deg(g(x)).$
Remainder theorem:Let $mathbb F$ be a field,$ain mathbb F,$ and $f(x)in mathbb F[x].$Then $f(a)$ is the remainder in the division of $f(x)$ by $x-a.$
Solution of $(1)$
By Remainder theorem,remainder,$r(x)=f(pmsqrt a)$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^2-a)q(x)+f(pmsqrt a)implies q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}.$
Hence quotient and remainder are $r(x)=f(pmsqrt a)$,$q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}$
Is it correct?
Solution of $(2)$
On comparing with the division algorithm, we have
$f(x)=x^m-1,g(x)=x^n-1$
Now by remainder theorem ,we have $r(x)=f(1^{1/n})=f(1)=0$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^n-1)q(x)+f(1^{1/n})implies q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}.$
Hence quotient and remainder are $r(x)=f(1^{1/n})=f(1)=0$,$q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}$
How do we guarantee that $r(x),q(x)in mathbb Z[x]?$
divisibility integers principal-ideal-domains euclidean-algorithm
$endgroup$
Determine the quotient and the remainder of the division:
($1$).of $fin mathbb K[x]$ by $x^2-a$ in $mathbb K[x],$Where
$mathbb K$ is a field.
($2$).of $x^m-1$ by $x^n-1$ in $mathbb Z[x],$for $m,ninmathbb N^*$
.
Results used
Division Algorithm for $mathbb F[x]$:Let $mathbb F$ be a field and let $f(x)$ and $g(x)mathbb F[x]$ with $g
(x)neq 0.$Then thete exists unique polynomials $q(x),r(x) in mathbb F[x]$ such that $f(x)=g(x)q(x)+r(x)$ and either $r(x)=0$ or $deg(r(x))<deg(g(x)).$
Remainder theorem:Let $mathbb F$ be a field,$ain mathbb F,$ and $f(x)in mathbb F[x].$Then $f(a)$ is the remainder in the division of $f(x)$ by $x-a.$
Solution of $(1)$
By Remainder theorem,remainder,$r(x)=f(pmsqrt a)$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^2-a)q(x)+f(pmsqrt a)implies q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}.$
Hence quotient and remainder are $r(x)=f(pmsqrt a)$,$q(x)=frac{f(x)-f(pmsqrt a)}{x^2-a}$
Is it correct?
Solution of $(2)$
On comparing with the division algorithm, we have
$f(x)=x^m-1,g(x)=x^n-1$
Now by remainder theorem ,we have $r(x)=f(1^{1/n})=f(1)=0$.
Let $q(x)$ be the quotient,then by division algorithm,$f(x)=(x^2-a)q(x)+r(x)implies f(x)=(x^n-1)q(x)+f(1^{1/n})implies q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}.$
Hence quotient and remainder are $r(x)=f(1^{1/n})=f(1)=0$,$q(x)=frac{x^m-1-0}{x^n-1}=frac{x^m-1}{x^n-1}$
How do we guarantee that $r(x),q(x)in mathbb Z[x]?$
divisibility integers principal-ideal-domains euclidean-algorithm
divisibility integers principal-ideal-domains euclidean-algorithm
asked Jan 21 at 13:03
P.StylesP.Styles
1,467827
1,467827
$begingroup$
For (1), it seems to me that the remainder is not what you say: for instance when $f(x)=x^2+x-a$, obviously we have $r(x)=x$.
$endgroup$
– René Gy
Jan 27 at 12:15
add a comment |
$begingroup$
For (1), it seems to me that the remainder is not what you say: for instance when $f(x)=x^2+x-a$, obviously we have $r(x)=x$.
$endgroup$
– René Gy
Jan 27 at 12:15
$begingroup$
For (1), it seems to me that the remainder is not what you say: for instance when $f(x)=x^2+x-a$, obviously we have $r(x)=x$.
$endgroup$
– René Gy
Jan 27 at 12:15
$begingroup$
For (1), it seems to me that the remainder is not what you say: for instance when $f(x)=x^2+x-a$, obviously we have $r(x)=x$.
$endgroup$
– René Gy
Jan 27 at 12:15
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081854%2fdetermine-the-quotient-and-the-remainder-of-the-division%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081854%2fdetermine-the-quotient-and-the-remainder-of-the-division%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For (1), it seems to me that the remainder is not what you say: for instance when $f(x)=x^2+x-a$, obviously we have $r(x)=x$.
$endgroup$
– René Gy
Jan 27 at 12:15