Determine the value of $α$ for which the $MSE(T)$ is minimal.
$begingroup$
Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.
Let $X_2$ be another estimator for $θ$.
Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.
Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.
Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.
Determine the value of $α$ for which the $MSE(T)$ is minimal.
$$MSE(T)=Var(T)+(E[T]-Theta)^2$$
$$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
$$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$
Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?
probability statistics estimation mean-square-error
$endgroup$
add a comment |
$begingroup$
Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.
Let $X_2$ be another estimator for $θ$.
Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.
Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.
Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.
Determine the value of $α$ for which the $MSE(T)$ is minimal.
$$MSE(T)=Var(T)+(E[T]-Theta)^2$$
$$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
$$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$
Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?
probability statistics estimation mean-square-error
$endgroup$
add a comment |
$begingroup$
Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.
Let $X_2$ be another estimator for $θ$.
Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.
Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.
Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.
Determine the value of $α$ for which the $MSE(T)$ is minimal.
$$MSE(T)=Var(T)+(E[T]-Theta)^2$$
$$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
$$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$
Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?
probability statistics estimation mean-square-error
$endgroup$
Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.
Let $X_2$ be another estimator for $θ$.
Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.
Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.
Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.
Determine the value of $α$ for which the $MSE(T)$ is minimal.
$$MSE(T)=Var(T)+(E[T]-Theta)^2$$
$$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
$$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$
Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?
probability statistics estimation mean-square-error
probability statistics estimation mean-square-error
asked Jan 26 at 22:03
Mark JaconMark Jacon
1127
1127
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
First differentiate, then set equal to zero:
begin{align*}
frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
& alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
& alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
end{align*}
$endgroup$
$begingroup$
Thank you for your answer, thanks to you I found my error! :)
$endgroup$
– Mark Jacon
Jan 26 at 22:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088824%2fdetermine-the-value-of-%25ce%25b1-for-which-the-mset-is-minimal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First differentiate, then set equal to zero:
begin{align*}
frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
& alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
& alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
end{align*}
$endgroup$
$begingroup$
Thank you for your answer, thanks to you I found my error! :)
$endgroup$
– Mark Jacon
Jan 26 at 22:19
add a comment |
$begingroup$
First differentiate, then set equal to zero:
begin{align*}
frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
& alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
& alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
end{align*}
$endgroup$
$begingroup$
Thank you for your answer, thanks to you I found my error! :)
$endgroup$
– Mark Jacon
Jan 26 at 22:19
add a comment |
$begingroup$
First differentiate, then set equal to zero:
begin{align*}
frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
& alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
& alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
end{align*}
$endgroup$
First differentiate, then set equal to zero:
begin{align*}
frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
& alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
& alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
end{align*}
answered Jan 26 at 22:12
inhuretnakhtinhuretnakht
38617
38617
$begingroup$
Thank you for your answer, thanks to you I found my error! :)
$endgroup$
– Mark Jacon
Jan 26 at 22:19
add a comment |
$begingroup$
Thank you for your answer, thanks to you I found my error! :)
$endgroup$
– Mark Jacon
Jan 26 at 22:19
$begingroup$
Thank you for your answer, thanks to you I found my error! :)
$endgroup$
– Mark Jacon
Jan 26 at 22:19
$begingroup$
Thank you for your answer, thanks to you I found my error! :)
$endgroup$
– Mark Jacon
Jan 26 at 22:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088824%2fdetermine-the-value-of-%25ce%25b1-for-which-the-mset-is-minimal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown