Determine the value of $α$ for which the $MSE(T)$ is minimal.












0












$begingroup$


Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.

Let $X_2$ be another estimator for $θ$.

Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.

Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.

Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.

Determine the value of $α$ for which the $MSE(T)$ is minimal.



$$MSE(T)=Var(T)+(E[T]-Theta)^2$$
$$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
$$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$



Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.

    Let $X_2$ be another estimator for $θ$.

    Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.

    Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.

    Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.

    Determine the value of $α$ for which the $MSE(T)$ is minimal.



    $$MSE(T)=Var(T)+(E[T]-Theta)^2$$
    $$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
    $$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$



    Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.

      Let $X_2$ be another estimator for $θ$.

      Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.

      Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.

      Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.

      Determine the value of $α$ for which the $MSE(T)$ is minimal.



      $$MSE(T)=Var(T)+(E[T]-Theta)^2$$
      $$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
      $$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$



      Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?










      share|cite|improve this question









      $endgroup$




      Let $X_1$ be an estimator for the probability $θ$ of unauthorized access.

      Let $X_2$ be another estimator for $θ$.

      Assume that $X_1$ and $X_2$ are independent, unbiased estimators for $θ$.

      Furthermore, let $σ_1^2$ be the variance of $X_1$ and $σ_2$ the variance of $X_2$.

      Finally, define a new estimator $T$ for $θ$ by $T = αX_1+(1−α)X_2$.

      Determine the value of $α$ for which the $MSE(T)$ is minimal.



      $$MSE(T)=Var(T)+(E[T]-Theta)^2$$
      $$E[T]=alpha E[X_1]+(1-alpha)E[X_2]=alphacdotTheta+(1-alpha)cdotTheta$$
      $$MSE(T)=Var(T)=alpha^2cdot Var(X_1)+(1-alpha)^2cdot Var(X_2)=alpha^2cdot sigma_1^2+(1-alpha)^2cdot sigma_2^2$$



      Now from this point how can I calculate the minimum value of $alpha$ that minimize the $MSE(T)$, in my opinion I should put $MSE(T)=0$, then differentiate respect to $alpha$ and solve for $alpha$, but if I do it, then $alpha$ will be equal to $0$, and I think is incorrect and I should find a finite value for it, where I'm wrong?







      probability statistics estimation mean-square-error






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 26 at 22:03









      Mark JaconMark Jacon

      1127




      1127






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          First differentiate, then set equal to zero:
          begin{align*}
          frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
          & alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
          & alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your answer, thanks to you I found my error! :)
            $endgroup$
            – Mark Jacon
            Jan 26 at 22:19











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088824%2fdetermine-the-value-of-%25ce%25b1-for-which-the-mset-is-minimal%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          First differentiate, then set equal to zero:
          begin{align*}
          frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
          & alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
          & alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your answer, thanks to you I found my error! :)
            $endgroup$
            – Mark Jacon
            Jan 26 at 22:19
















          1












          $begingroup$

          First differentiate, then set equal to zero:
          begin{align*}
          frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
          & alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
          & alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your answer, thanks to you I found my error! :)
            $endgroup$
            – Mark Jacon
            Jan 26 at 22:19














          1












          1








          1





          $begingroup$

          First differentiate, then set equal to zero:
          begin{align*}
          frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
          & alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
          & alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
          end{align*}






          share|cite|improve this answer









          $endgroup$



          First differentiate, then set equal to zero:
          begin{align*}
          frac{d}{dalpha}text{MSE}(alpha) &= 2alpha sigma_1^2 - 2(1 - alpha)sigma_2^2 = 0\
          & alpha (sigma_1^2 +sigma_2^2) - sigma_2^2 = 0\
          & alpha = frac{sigma_2^2}{sigma_1^2 + sigma_2^2}
          end{align*}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 26 at 22:12









          inhuretnakhtinhuretnakht

          38617




          38617












          • $begingroup$
            Thank you for your answer, thanks to you I found my error! :)
            $endgroup$
            – Mark Jacon
            Jan 26 at 22:19


















          • $begingroup$
            Thank you for your answer, thanks to you I found my error! :)
            $endgroup$
            – Mark Jacon
            Jan 26 at 22:19
















          $begingroup$
          Thank you for your answer, thanks to you I found my error! :)
          $endgroup$
          – Mark Jacon
          Jan 26 at 22:19




          $begingroup$
          Thank you for your answer, thanks to you I found my error! :)
          $endgroup$
          – Mark Jacon
          Jan 26 at 22:19


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088824%2fdetermine-the-value-of-%25ce%25b1-for-which-the-mset-is-minimal%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          Npm cannot find a required file even through it is in the searched directory