Finding characteristic and minimal polynomials and the Jordan normal form of $f$, knowing some relations for...
$begingroup$
Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.
I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.
Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.
How should I continue?
linear-algebra vector-spaces linear-transformations jordan-normal-form minimal-polynomials
$endgroup$
add a comment |
$begingroup$
Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.
I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.
Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.
How should I continue?
linear-algebra vector-spaces linear-transformations jordan-normal-form minimal-polynomials
$endgroup$
add a comment |
$begingroup$
Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.
I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.
Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.
How should I continue?
linear-algebra vector-spaces linear-transformations jordan-normal-form minimal-polynomials
$endgroup$
Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.
I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.
Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.
How should I continue?
linear-algebra vector-spaces linear-transformations jordan-normal-form minimal-polynomials
linear-algebra vector-spaces linear-transformations jordan-normal-form minimal-polynomials
edited Jan 29 at 14:12


Marc van Leeuwen
87.8k5111225
87.8k5111225
asked Jan 20 at 23:41
LearnerLearner
17510
17510
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.
Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
Take now the case $k=0$. If $bne0$, then
$$
x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
$$
satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.
In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.
If $k=0$ and $a=0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081276%2ffinding-characteristic-and-minimal-polynomials-and-the-jordan-normal-form-of-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.
Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
Take now the case $k=0$. If $bne0$, then
$$
x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
$$
satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.
In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.
If $k=0$ and $a=0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
$endgroup$
add a comment |
$begingroup$
Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.
Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
Take now the case $k=0$. If $bne0$, then
$$
x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
$$
satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.
In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.
If $k=0$ and $a=0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
$endgroup$
add a comment |
$begingroup$
Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.
Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
Take now the case $k=0$. If $bne0$, then
$$
x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
$$
satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.
In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.
If $k=0$ and $a=0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
$endgroup$
Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.
Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
Take now the case $k=0$. If $bne0$, then
$$
x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
$$
satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.
In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.
If $k=0$ and $a=0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
$$
begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
$$
answered Jan 21 at 2:37


Martin ArgeramiMartin Argerami
128k1183183
128k1183183
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081276%2ffinding-characteristic-and-minimal-polynomials-and-the-jordan-normal-form-of-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown