Finding characteristic and minimal polynomials and the Jordan normal form of $f$, knowing some relations for...












1












$begingroup$


Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.



I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.



Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.



How should I continue?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.



    I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.



    Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.



    How should I continue?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.



      I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.



      Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.



      How should I continue?










      share|cite|improve this question











      $endgroup$




      Given a vector space $V$ of dimension $4$ and a base ${v_1,v_2,v_3,v_4}$, let $f$ be an endomorphism of $V$ such that $f^3=0$ and moreover $f(v_1)=f(v_2)=v_3$, $f(v_3)=kv_4$, and $f(v_4)inleft<v_1,v_4right>$, where $k$ is a real parameter.



      I should find the characteristic polynomial $chi_f$, as well as the minimal one $m_f$, and the Jordan normal form of $f$, depending on $k$ and $f(v_4)$.



      Now, here's my thoughts: $f^3=0$ means that either $m_f(t)=t^2$ or $m_f=t^3$; furthermore, $$0=f^3(v_1)=f^3(v_2)=f^2(v_3)=f(kv_4)=kcdot f(v_4) $$so I guess one should consider separately $k=0$, which lets $f(v_4)$ be a parameter, and $kne0$ which forces $f(v_4)=0$.



      How should I continue?







      linear-algebra vector-spaces linear-transformations jordan-normal-form minimal-polynomials






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 14:12









      Marc van Leeuwen

      87.8k5111225




      87.8k5111225










      asked Jan 20 at 23:41









      LearnerLearner

      17510




      17510






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.



          Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
          $$
          begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
          $$

          Take now the case $k=0$. If $bne0$, then
          $$
          x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
          $$

          satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.



          In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.




          • If $k=0$ and $a=0$, the Jordan form is
            $$
            begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
            $$


          • If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
            $$
            begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
            $$







          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081276%2ffinding-characteristic-and-minimal-polynomials-and-the-jordan-normal-form-of-f%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.



            Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
            $$
            begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
            $$

            Take now the case $k=0$. If $bne0$, then
            $$
            x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
            $$

            satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.



            In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.




            • If $k=0$ and $a=0$, the Jordan form is
              $$
              begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
              $$


            • If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
              $$
              begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
              $$







            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.



              Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
              $$
              begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
              $$

              Take now the case $k=0$. If $bne0$, then
              $$
              x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
              $$

              satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.



              In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.




              • If $k=0$ and $a=0$, the Jordan form is
                $$
                begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                $$


              • If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
                $$
                begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                $$







              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.



                Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
                $$
                begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                $$

                Take now the case $k=0$. If $bne0$, then
                $$
                x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
                $$

                satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.



                In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.




                • If $k=0$ and $a=0$, the Jordan form is
                  $$
                  begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                  $$


                • If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
                  $$
                  begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                  $$







                share|cite|improve this answer









                $endgroup$



                Note that $f$ cannot be a Jordan block can by of size 4, since $f^3=0$. Also $f^3=0$ forces all eigenvalues of $f$ to be zero, so the characteristic polynomial is $chi_f(lambda)=lambda^4$.



                Assume first that $kne0$. As you say, $f(v_4)=0$. Then $v_1,v_3,v_4$ form a basis for a $3times 3$ Jordan block. So the Jordan form of $f$ is
                $$
                begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                $$

                Take now the case $k=0$. If $bne0$, then
                $$
                x=tfrac ab,v_1+tfrac a{b^2},v_3+v_4
                $$

                satisfies $f(x)=bx$, so $b$ is an eigenvalue. But this is not possible, as it contradicts $f^3=0$. Thus $b=0$, and so $f(v_4)=av_1$ for some $a$. So, if $ane0$, then $v_3,v_1,tfrac1a,v_4$ is a basis for a $3times 3$ Jordan block. If $a=0$, then $f(v_4)=0$. Then $v_1,v_3$ give you a $2times 2$ Jordan block, and you can complete the basis with $v_4$ and $v_1-v_2$, both in the kernel of $f$.



                In summary: the deciding factors are $k$ and $a$ in $f(v_4)=av_1+bv_4$.




                • If $k=0$ and $a=0$, the Jordan form is
                  $$
                  begin{bmatrix} 0&1&0&0\ 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                  $$


                • If $k=0$ and $ane0$, or if $kne0$, the Jordan form is
                  $$
                  begin{bmatrix} 0&1&0&0\ 0&0&1&0\ 0&0&0&0\ 0&0&0&0end{bmatrix}.
                  $$








                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 21 at 2:37









                Martin ArgeramiMartin Argerami

                128k1183183




                128k1183183






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081276%2ffinding-characteristic-and-minimal-polynomials-and-the-jordan-normal-form-of-f%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                    How to fix TextFormField cause rebuild widget in Flutter