$forall{x}inmathbb{Z}$, if $forall{x}inmathbb{N}$, $a^xmid{x}$, then $a=1$ or $a=-1$.
$begingroup$
Prove or disprove:
$forall{x}inmathbb{Z}$, if $forall{x}inmathbb{N}$, $a^xmid{x}$, then $a=1$ or $a=-1$.
I tried proving the positive but I'm not sure if it is the right approach.
proof-writing divisibility
$endgroup$
add a comment |
$begingroup$
Prove or disprove:
$forall{x}inmathbb{Z}$, if $forall{x}inmathbb{N}$, $a^xmid{x}$, then $a=1$ or $a=-1$.
I tried proving the positive but I'm not sure if it is the right approach.
proof-writing divisibility
$endgroup$
3
$begingroup$
Why do you have both $forall x in mathbb{Z}$ and $forall x in mathbb{N}$? I don't understand including both in the problem. Isn't the problem statement the same if you delete one of them?
$endgroup$
– David G. Stork
Jan 21 at 5:30
add a comment |
$begingroup$
Prove or disprove:
$forall{x}inmathbb{Z}$, if $forall{x}inmathbb{N}$, $a^xmid{x}$, then $a=1$ or $a=-1$.
I tried proving the positive but I'm not sure if it is the right approach.
proof-writing divisibility
$endgroup$
Prove or disprove:
$forall{x}inmathbb{Z}$, if $forall{x}inmathbb{N}$, $a^xmid{x}$, then $a=1$ or $a=-1$.
I tried proving the positive but I'm not sure if it is the right approach.
proof-writing divisibility
proof-writing divisibility
edited Jan 21 at 5:31
David G. Stork
11k41432
11k41432
asked Jan 21 at 5:26
macymacy
305
305
3
$begingroup$
Why do you have both $forall x in mathbb{Z}$ and $forall x in mathbb{N}$? I don't understand including both in the problem. Isn't the problem statement the same if you delete one of them?
$endgroup$
– David G. Stork
Jan 21 at 5:30
add a comment |
3
$begingroup$
Why do you have both $forall x in mathbb{Z}$ and $forall x in mathbb{N}$? I don't understand including both in the problem. Isn't the problem statement the same if you delete one of them?
$endgroup$
– David G. Stork
Jan 21 at 5:30
3
3
$begingroup$
Why do you have both $forall x in mathbb{Z}$ and $forall x in mathbb{N}$? I don't understand including both in the problem. Isn't the problem statement the same if you delete one of them?
$endgroup$
– David G. Stork
Jan 21 at 5:30
$begingroup$
Why do you have both $forall x in mathbb{Z}$ and $forall x in mathbb{N}$? I don't understand including both in the problem. Isn't the problem statement the same if you delete one of them?
$endgroup$
– David G. Stork
Jan 21 at 5:30
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We have: if $a ge 2 implies a^x ge 2^x > ximplies a^x > ximplies a^x nmid x$. Thus if $a^x mid x implies a = 1$. Also, if $a le -2 implies |a^x| ge 2^x > x implies |a^x| > ximplies |a^x| nmid ximplies a^x nmid x$. Thus $a^x mid x implies a = -1$. Together we have: $a = pm 1$.
$endgroup$
add a comment |
$begingroup$
Note that if $a^x | x,$ then $ a^x leq x.$ Now consider when this is possible and try to take it from there.
$endgroup$
add a comment |
$begingroup$
If $a > 1$ is should be become apparent that $a^m > m$. After all $a^m = a*a*a.... $ and as $a*a = a+a+a+a... ge a+a$ we have $a*a*a* ge a+a+a+.... > 1+1+1+.... = m$.
(To make this clearer consider $5^3 = 5*5^2 = 5^2 + 5^2 + 5^2 + 5^2 +5^2 ge 5^2 + 5^2 > 1 + 5^2 = 1 + 5*5 = 1 + 5+5 +5 +5+5 ge 1+ 5+5 > 1+1+1 = 3$)
We can try to prove that more formally.
If $a > 1$ then $a ge 2$ and $a^m ge 2^m =(1+1)^m =_{text{by binomial theorem}} sum_{k=0}^m {mchoose k}1^k ge sum_{k=0}^m ge m+1$.
Now for positive numbers if $a|b$ then $ale b$ so $a^m|m$ means $a^m le m$ but that's a contradiction if $a > 1$.
So if $a$ is a positive integer and $a^m|m$ then $a =1$.
But what about $0$ and negative values?
Well $0 not mid k$ if $kne 0$ so that $a ne 0$.
And for negative numbers $a|b iff small{|}asmall{|}large{mid}small{|}bsmall{|}$ and if $a < 0$ then $a^m = pm |a|^m$. So this holds for negative $a$ as well.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081543%2fforallx-in-mathbbz-if-forallx-in-mathbbn-ax-midx-then-a-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have: if $a ge 2 implies a^x ge 2^x > ximplies a^x > ximplies a^x nmid x$. Thus if $a^x mid x implies a = 1$. Also, if $a le -2 implies |a^x| ge 2^x > x implies |a^x| > ximplies |a^x| nmid ximplies a^x nmid x$. Thus $a^x mid x implies a = -1$. Together we have: $a = pm 1$.
$endgroup$
add a comment |
$begingroup$
We have: if $a ge 2 implies a^x ge 2^x > ximplies a^x > ximplies a^x nmid x$. Thus if $a^x mid x implies a = 1$. Also, if $a le -2 implies |a^x| ge 2^x > x implies |a^x| > ximplies |a^x| nmid ximplies a^x nmid x$. Thus $a^x mid x implies a = -1$. Together we have: $a = pm 1$.
$endgroup$
add a comment |
$begingroup$
We have: if $a ge 2 implies a^x ge 2^x > ximplies a^x > ximplies a^x nmid x$. Thus if $a^x mid x implies a = 1$. Also, if $a le -2 implies |a^x| ge 2^x > x implies |a^x| > ximplies |a^x| nmid ximplies a^x nmid x$. Thus $a^x mid x implies a = -1$. Together we have: $a = pm 1$.
$endgroup$
We have: if $a ge 2 implies a^x ge 2^x > ximplies a^x > ximplies a^x nmid x$. Thus if $a^x mid x implies a = 1$. Also, if $a le -2 implies |a^x| ge 2^x > x implies |a^x| > ximplies |a^x| nmid ximplies a^x nmid x$. Thus $a^x mid x implies a = -1$. Together we have: $a = pm 1$.
answered Jan 21 at 5:35
DeepSeaDeepSea
71.3k54488
71.3k54488
add a comment |
add a comment |
$begingroup$
Note that if $a^x | x,$ then $ a^x leq x.$ Now consider when this is possible and try to take it from there.
$endgroup$
add a comment |
$begingroup$
Note that if $a^x | x,$ then $ a^x leq x.$ Now consider when this is possible and try to take it from there.
$endgroup$
add a comment |
$begingroup$
Note that if $a^x | x,$ then $ a^x leq x.$ Now consider when this is possible and try to take it from there.
$endgroup$
Note that if $a^x | x,$ then $ a^x leq x.$ Now consider when this is possible and try to take it from there.
answered Jan 21 at 5:35
Jack PfaffingerJack Pfaffinger
374112
374112
add a comment |
add a comment |
$begingroup$
If $a > 1$ is should be become apparent that $a^m > m$. After all $a^m = a*a*a.... $ and as $a*a = a+a+a+a... ge a+a$ we have $a*a*a* ge a+a+a+.... > 1+1+1+.... = m$.
(To make this clearer consider $5^3 = 5*5^2 = 5^2 + 5^2 + 5^2 + 5^2 +5^2 ge 5^2 + 5^2 > 1 + 5^2 = 1 + 5*5 = 1 + 5+5 +5 +5+5 ge 1+ 5+5 > 1+1+1 = 3$)
We can try to prove that more formally.
If $a > 1$ then $a ge 2$ and $a^m ge 2^m =(1+1)^m =_{text{by binomial theorem}} sum_{k=0}^m {mchoose k}1^k ge sum_{k=0}^m ge m+1$.
Now for positive numbers if $a|b$ then $ale b$ so $a^m|m$ means $a^m le m$ but that's a contradiction if $a > 1$.
So if $a$ is a positive integer and $a^m|m$ then $a =1$.
But what about $0$ and negative values?
Well $0 not mid k$ if $kne 0$ so that $a ne 0$.
And for negative numbers $a|b iff small{|}asmall{|}large{mid}small{|}bsmall{|}$ and if $a < 0$ then $a^m = pm |a|^m$. So this holds for negative $a$ as well.
$endgroup$
add a comment |
$begingroup$
If $a > 1$ is should be become apparent that $a^m > m$. After all $a^m = a*a*a.... $ and as $a*a = a+a+a+a... ge a+a$ we have $a*a*a* ge a+a+a+.... > 1+1+1+.... = m$.
(To make this clearer consider $5^3 = 5*5^2 = 5^2 + 5^2 + 5^2 + 5^2 +5^2 ge 5^2 + 5^2 > 1 + 5^2 = 1 + 5*5 = 1 + 5+5 +5 +5+5 ge 1+ 5+5 > 1+1+1 = 3$)
We can try to prove that more formally.
If $a > 1$ then $a ge 2$ and $a^m ge 2^m =(1+1)^m =_{text{by binomial theorem}} sum_{k=0}^m {mchoose k}1^k ge sum_{k=0}^m ge m+1$.
Now for positive numbers if $a|b$ then $ale b$ so $a^m|m$ means $a^m le m$ but that's a contradiction if $a > 1$.
So if $a$ is a positive integer and $a^m|m$ then $a =1$.
But what about $0$ and negative values?
Well $0 not mid k$ if $kne 0$ so that $a ne 0$.
And for negative numbers $a|b iff small{|}asmall{|}large{mid}small{|}bsmall{|}$ and if $a < 0$ then $a^m = pm |a|^m$. So this holds for negative $a$ as well.
$endgroup$
add a comment |
$begingroup$
If $a > 1$ is should be become apparent that $a^m > m$. After all $a^m = a*a*a.... $ and as $a*a = a+a+a+a... ge a+a$ we have $a*a*a* ge a+a+a+.... > 1+1+1+.... = m$.
(To make this clearer consider $5^3 = 5*5^2 = 5^2 + 5^2 + 5^2 + 5^2 +5^2 ge 5^2 + 5^2 > 1 + 5^2 = 1 + 5*5 = 1 + 5+5 +5 +5+5 ge 1+ 5+5 > 1+1+1 = 3$)
We can try to prove that more formally.
If $a > 1$ then $a ge 2$ and $a^m ge 2^m =(1+1)^m =_{text{by binomial theorem}} sum_{k=0}^m {mchoose k}1^k ge sum_{k=0}^m ge m+1$.
Now for positive numbers if $a|b$ then $ale b$ so $a^m|m$ means $a^m le m$ but that's a contradiction if $a > 1$.
So if $a$ is a positive integer and $a^m|m$ then $a =1$.
But what about $0$ and negative values?
Well $0 not mid k$ if $kne 0$ so that $a ne 0$.
And for negative numbers $a|b iff small{|}asmall{|}large{mid}small{|}bsmall{|}$ and if $a < 0$ then $a^m = pm |a|^m$. So this holds for negative $a$ as well.
$endgroup$
If $a > 1$ is should be become apparent that $a^m > m$. After all $a^m = a*a*a.... $ and as $a*a = a+a+a+a... ge a+a$ we have $a*a*a* ge a+a+a+.... > 1+1+1+.... = m$.
(To make this clearer consider $5^3 = 5*5^2 = 5^2 + 5^2 + 5^2 + 5^2 +5^2 ge 5^2 + 5^2 > 1 + 5^2 = 1 + 5*5 = 1 + 5+5 +5 +5+5 ge 1+ 5+5 > 1+1+1 = 3$)
We can try to prove that more formally.
If $a > 1$ then $a ge 2$ and $a^m ge 2^m =(1+1)^m =_{text{by binomial theorem}} sum_{k=0}^m {mchoose k}1^k ge sum_{k=0}^m ge m+1$.
Now for positive numbers if $a|b$ then $ale b$ so $a^m|m$ means $a^m le m$ but that's a contradiction if $a > 1$.
So if $a$ is a positive integer and $a^m|m$ then $a =1$.
But what about $0$ and negative values?
Well $0 not mid k$ if $kne 0$ so that $a ne 0$.
And for negative numbers $a|b iff small{|}asmall{|}large{mid}small{|}bsmall{|}$ and if $a < 0$ then $a^m = pm |a|^m$. So this holds for negative $a$ as well.
answered Jan 21 at 5:57
fleabloodfleablood
71.9k22686
71.9k22686
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081543%2fforallx-in-mathbbz-if-forallx-in-mathbbn-ax-midx-then-a-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Why do you have both $forall x in mathbb{Z}$ and $forall x in mathbb{N}$? I don't understand including both in the problem. Isn't the problem statement the same if you delete one of them?
$endgroup$
– David G. Stork
Jan 21 at 5:30