How to build map rows from comma-delimited strings?












0















    var clearedLine = ""
var dict = collection.mutable.Map[String, String]()
val rdd = BufferedSource.map(line=> ({
if (!line.endsWith(", ")) {
clearedLine = line+", "
} else{
clearedLine = line.trim
}
clearedLine.split(",")(0).trim->clearedLine.split(",")(1).trim
}
//,clearedLine.split(",")(1).trim->clearedLine.split(",")(0).trim
)
//dict +=clearedLine.split(",")(0).trim.replace(" TO ","->")
)

for ((k,v) <- rdd) printf("key: %s, value: %sn", k, v)


OUTPUT:



key: EQU EB.AR.DESCRIPT TO 1, value: EB.AR.ASSET.CLASS TO 2
key: EB.AR.CURRENCY TO 3, value: EB.AR.ORIGINAL.VALUE TO 4


I want to split By ' TO ' then prouduce the single dict key->value,please help



   key: 1,  value: EQU EB.AR.DESCRIPT 
key: 2 value: EB.AR.ASSET.CLASS
key: 3, value: EB.AR.CURRENCY
key: 4, value: EB.AR.ORIGINAL.VALUE









share|improve this question





























    0















        var clearedLine = ""
    var dict = collection.mutable.Map[String, String]()
    val rdd = BufferedSource.map(line=> ({
    if (!line.endsWith(", ")) {
    clearedLine = line+", "
    } else{
    clearedLine = line.trim
    }
    clearedLine.split(",")(0).trim->clearedLine.split(",")(1).trim
    }
    //,clearedLine.split(",")(1).trim->clearedLine.split(",")(0).trim
    )
    //dict +=clearedLine.split(",")(0).trim.replace(" TO ","->")
    )

    for ((k,v) <- rdd) printf("key: %s, value: %sn", k, v)


    OUTPUT:



    key: EQU EB.AR.DESCRIPT TO 1, value: EB.AR.ASSET.CLASS TO 2
    key: EB.AR.CURRENCY TO 3, value: EB.AR.ORIGINAL.VALUE TO 4


    I want to split By ' TO ' then prouduce the single dict key->value,please help



       key: 1,  value: EQU EB.AR.DESCRIPT 
    key: 2 value: EB.AR.ASSET.CLASS
    key: 3, value: EB.AR.CURRENCY
    key: 4, value: EB.AR.ORIGINAL.VALUE









    share|improve this question



























      0












      0








      0








          var clearedLine = ""
      var dict = collection.mutable.Map[String, String]()
      val rdd = BufferedSource.map(line=> ({
      if (!line.endsWith(", ")) {
      clearedLine = line+", "
      } else{
      clearedLine = line.trim
      }
      clearedLine.split(",")(0).trim->clearedLine.split(",")(1).trim
      }
      //,clearedLine.split(",")(1).trim->clearedLine.split(",")(0).trim
      )
      //dict +=clearedLine.split(",")(0).trim.replace(" TO ","->")
      )

      for ((k,v) <- rdd) printf("key: %s, value: %sn", k, v)


      OUTPUT:



      key: EQU EB.AR.DESCRIPT TO 1, value: EB.AR.ASSET.CLASS TO 2
      key: EB.AR.CURRENCY TO 3, value: EB.AR.ORIGINAL.VALUE TO 4


      I want to split By ' TO ' then prouduce the single dict key->value,please help



         key: 1,  value: EQU EB.AR.DESCRIPT 
      key: 2 value: EB.AR.ASSET.CLASS
      key: 3, value: EB.AR.CURRENCY
      key: 4, value: EB.AR.ORIGINAL.VALUE









      share|improve this question
















          var clearedLine = ""
      var dict = collection.mutable.Map[String, String]()
      val rdd = BufferedSource.map(line=> ({
      if (!line.endsWith(", ")) {
      clearedLine = line+", "
      } else{
      clearedLine = line.trim
      }
      clearedLine.split(",")(0).trim->clearedLine.split(",")(1).trim
      }
      //,clearedLine.split(",")(1).trim->clearedLine.split(",")(0).trim
      )
      //dict +=clearedLine.split(",")(0).trim.replace(" TO ","->")
      )

      for ((k,v) <- rdd) printf("key: %s, value: %sn", k, v)


      OUTPUT:



      key: EQU EB.AR.DESCRIPT TO 1, value: EB.AR.ASSET.CLASS TO 2
      key: EB.AR.CURRENCY TO 3, value: EB.AR.ORIGINAL.VALUE TO 4


      I want to split By ' TO ' then prouduce the single dict key->value,please help



         key: 1,  value: EQU EB.AR.DESCRIPT 
      key: 2 value: EB.AR.ASSET.CLASS
      key: 3, value: EB.AR.CURRENCY
      key: 4, value: EB.AR.ORIGINAL.VALUE






      scala apache-spark apache-spark-sql






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 1 at 17:38









      Jacek Laskowski

      45.5k18134275




      45.5k18134275










      asked Dec 31 '18 at 8:32









      kn3lkn3l

      7,709216495




      7,709216495
























          1 Answer
          1






          active

          oldest

          votes


















          2














          Assuming your input to be lines like below



          EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2
          EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4


          try this scala df solution



          scala> val df = Seq(("EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2"),("EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4")).toDF("a")
          df: org.apache.spark.sql.DataFrame = [a: string]

          scala> df.show(false)
          +----------------------------------------------+
          |a |
          +----------------------------------------------+
          |EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2|
          |EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4|
          +----------------------------------------------+


          scala> val df2 = df.select(split($"a",",").getItem(0).as("a1"),split($"a",",").getItem(1).as("a2"))
          df2: org.apache.spark.sql.DataFrame = [a1: string, a2: string]

          scala> df2.show(false)
          +-----------------------+--------------------------+
          |a1 |a2 |
          +-----------------------+--------------------------+
          |EQU EB.AR.DESCRIPT TO 1|EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 | EB.AR.ORIGINAL.VALUE TO 4|
          +-----------------------+--------------------------+


          scala> val df3 = df2.flatMap( r => { (0 until r.size).map( i=> r.getString(i) ) })
          df3: org.apache.spark.sql.Dataset[String] = [value: string]

          scala> df3.show(false)
          +--------------------------+
          |value |
          +--------------------------+
          |EQU EB.AR.DESCRIPT TO 1 |
          |EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 |
          | EB.AR.ORIGINAL.VALUE TO 4|
          +--------------------------+


          scala> df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).show(false)
          +---+---------------------+
          |key|value |
          +---+---------------------+
          |1 |EQU EB.AR.DESCRIPT |
          |2 |EB.AR.ASSET.CLASS |
          |3 |EB.AR.CURRENCY |
          |4 | EB.AR.ORIGINAL.VALUE|
          +---+---------------------+


          If you want them as "map" column, then



          scala> val df4 = df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).select(map($"key",$"value").as("kv"))
          df4: org.apache.spark.sql.DataFrame = [kv: map<string,string>]

          scala> df4.show(false)
          +----------------------------+
          |kv |
          +----------------------------+
          |[1 -> EQU EB.AR.DESCRIPT] |
          |[2 -> EB.AR.ASSET.CLASS] |
          |[3 -> EB.AR.CURRENCY] |
          |[4 -> EB.AR.ORIGINAL.VALUE]|
          +----------------------------+


          scala> df4.printSchema
          root
          |-- kv: map (nullable = false)
          | |-- key: string
          | |-- value: string (valueContainsNull = true)


          scala>





          share|improve this answer


























          • which spark version you use?

            – kn3l
            Jan 2 at 5:01











          • im using spark 2.3 ..

            – stack0114106
            Jan 2 at 5:03











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53985259%2fhow-to-build-map-rows-from-comma-delimited-strings%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2














          Assuming your input to be lines like below



          EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2
          EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4


          try this scala df solution



          scala> val df = Seq(("EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2"),("EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4")).toDF("a")
          df: org.apache.spark.sql.DataFrame = [a: string]

          scala> df.show(false)
          +----------------------------------------------+
          |a |
          +----------------------------------------------+
          |EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2|
          |EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4|
          +----------------------------------------------+


          scala> val df2 = df.select(split($"a",",").getItem(0).as("a1"),split($"a",",").getItem(1).as("a2"))
          df2: org.apache.spark.sql.DataFrame = [a1: string, a2: string]

          scala> df2.show(false)
          +-----------------------+--------------------------+
          |a1 |a2 |
          +-----------------------+--------------------------+
          |EQU EB.AR.DESCRIPT TO 1|EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 | EB.AR.ORIGINAL.VALUE TO 4|
          +-----------------------+--------------------------+


          scala> val df3 = df2.flatMap( r => { (0 until r.size).map( i=> r.getString(i) ) })
          df3: org.apache.spark.sql.Dataset[String] = [value: string]

          scala> df3.show(false)
          +--------------------------+
          |value |
          +--------------------------+
          |EQU EB.AR.DESCRIPT TO 1 |
          |EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 |
          | EB.AR.ORIGINAL.VALUE TO 4|
          +--------------------------+


          scala> df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).show(false)
          +---+---------------------+
          |key|value |
          +---+---------------------+
          |1 |EQU EB.AR.DESCRIPT |
          |2 |EB.AR.ASSET.CLASS |
          |3 |EB.AR.CURRENCY |
          |4 | EB.AR.ORIGINAL.VALUE|
          +---+---------------------+


          If you want them as "map" column, then



          scala> val df4 = df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).select(map($"key",$"value").as("kv"))
          df4: org.apache.spark.sql.DataFrame = [kv: map<string,string>]

          scala> df4.show(false)
          +----------------------------+
          |kv |
          +----------------------------+
          |[1 -> EQU EB.AR.DESCRIPT] |
          |[2 -> EB.AR.ASSET.CLASS] |
          |[3 -> EB.AR.CURRENCY] |
          |[4 -> EB.AR.ORIGINAL.VALUE]|
          +----------------------------+


          scala> df4.printSchema
          root
          |-- kv: map (nullable = false)
          | |-- key: string
          | |-- value: string (valueContainsNull = true)


          scala>





          share|improve this answer


























          • which spark version you use?

            – kn3l
            Jan 2 at 5:01











          • im using spark 2.3 ..

            – stack0114106
            Jan 2 at 5:03
















          2














          Assuming your input to be lines like below



          EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2
          EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4


          try this scala df solution



          scala> val df = Seq(("EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2"),("EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4")).toDF("a")
          df: org.apache.spark.sql.DataFrame = [a: string]

          scala> df.show(false)
          +----------------------------------------------+
          |a |
          +----------------------------------------------+
          |EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2|
          |EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4|
          +----------------------------------------------+


          scala> val df2 = df.select(split($"a",",").getItem(0).as("a1"),split($"a",",").getItem(1).as("a2"))
          df2: org.apache.spark.sql.DataFrame = [a1: string, a2: string]

          scala> df2.show(false)
          +-----------------------+--------------------------+
          |a1 |a2 |
          +-----------------------+--------------------------+
          |EQU EB.AR.DESCRIPT TO 1|EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 | EB.AR.ORIGINAL.VALUE TO 4|
          +-----------------------+--------------------------+


          scala> val df3 = df2.flatMap( r => { (0 until r.size).map( i=> r.getString(i) ) })
          df3: org.apache.spark.sql.Dataset[String] = [value: string]

          scala> df3.show(false)
          +--------------------------+
          |value |
          +--------------------------+
          |EQU EB.AR.DESCRIPT TO 1 |
          |EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 |
          | EB.AR.ORIGINAL.VALUE TO 4|
          +--------------------------+


          scala> df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).show(false)
          +---+---------------------+
          |key|value |
          +---+---------------------+
          |1 |EQU EB.AR.DESCRIPT |
          |2 |EB.AR.ASSET.CLASS |
          |3 |EB.AR.CURRENCY |
          |4 | EB.AR.ORIGINAL.VALUE|
          +---+---------------------+


          If you want them as "map" column, then



          scala> val df4 = df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).select(map($"key",$"value").as("kv"))
          df4: org.apache.spark.sql.DataFrame = [kv: map<string,string>]

          scala> df4.show(false)
          +----------------------------+
          |kv |
          +----------------------------+
          |[1 -> EQU EB.AR.DESCRIPT] |
          |[2 -> EB.AR.ASSET.CLASS] |
          |[3 -> EB.AR.CURRENCY] |
          |[4 -> EB.AR.ORIGINAL.VALUE]|
          +----------------------------+


          scala> df4.printSchema
          root
          |-- kv: map (nullable = false)
          | |-- key: string
          | |-- value: string (valueContainsNull = true)


          scala>





          share|improve this answer


























          • which spark version you use?

            – kn3l
            Jan 2 at 5:01











          • im using spark 2.3 ..

            – stack0114106
            Jan 2 at 5:03














          2












          2








          2







          Assuming your input to be lines like below



          EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2
          EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4


          try this scala df solution



          scala> val df = Seq(("EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2"),("EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4")).toDF("a")
          df: org.apache.spark.sql.DataFrame = [a: string]

          scala> df.show(false)
          +----------------------------------------------+
          |a |
          +----------------------------------------------+
          |EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2|
          |EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4|
          +----------------------------------------------+


          scala> val df2 = df.select(split($"a",",").getItem(0).as("a1"),split($"a",",").getItem(1).as("a2"))
          df2: org.apache.spark.sql.DataFrame = [a1: string, a2: string]

          scala> df2.show(false)
          +-----------------------+--------------------------+
          |a1 |a2 |
          +-----------------------+--------------------------+
          |EQU EB.AR.DESCRIPT TO 1|EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 | EB.AR.ORIGINAL.VALUE TO 4|
          +-----------------------+--------------------------+


          scala> val df3 = df2.flatMap( r => { (0 until r.size).map( i=> r.getString(i) ) })
          df3: org.apache.spark.sql.Dataset[String] = [value: string]

          scala> df3.show(false)
          +--------------------------+
          |value |
          +--------------------------+
          |EQU EB.AR.DESCRIPT TO 1 |
          |EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 |
          | EB.AR.ORIGINAL.VALUE TO 4|
          +--------------------------+


          scala> df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).show(false)
          +---+---------------------+
          |key|value |
          +---+---------------------+
          |1 |EQU EB.AR.DESCRIPT |
          |2 |EB.AR.ASSET.CLASS |
          |3 |EB.AR.CURRENCY |
          |4 | EB.AR.ORIGINAL.VALUE|
          +---+---------------------+


          If you want them as "map" column, then



          scala> val df4 = df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).select(map($"key",$"value").as("kv"))
          df4: org.apache.spark.sql.DataFrame = [kv: map<string,string>]

          scala> df4.show(false)
          +----------------------------+
          |kv |
          +----------------------------+
          |[1 -> EQU EB.AR.DESCRIPT] |
          |[2 -> EB.AR.ASSET.CLASS] |
          |[3 -> EB.AR.CURRENCY] |
          |[4 -> EB.AR.ORIGINAL.VALUE]|
          +----------------------------+


          scala> df4.printSchema
          root
          |-- kv: map (nullable = false)
          | |-- key: string
          | |-- value: string (valueContainsNull = true)


          scala>





          share|improve this answer















          Assuming your input to be lines like below



          EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2
          EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4


          try this scala df solution



          scala> val df = Seq(("EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2"),("EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4")).toDF("a")
          df: org.apache.spark.sql.DataFrame = [a: string]

          scala> df.show(false)
          +----------------------------------------------+
          |a |
          +----------------------------------------------+
          |EQU EB.AR.DESCRIPT TO 1,EB.AR.ASSET.CLASS TO 2|
          |EB.AR.CURRENCY TO 3, EB.AR.ORIGINAL.VALUE TO 4|
          +----------------------------------------------+


          scala> val df2 = df.select(split($"a",",").getItem(0).as("a1"),split($"a",",").getItem(1).as("a2"))
          df2: org.apache.spark.sql.DataFrame = [a1: string, a2: string]

          scala> df2.show(false)
          +-----------------------+--------------------------+
          |a1 |a2 |
          +-----------------------+--------------------------+
          |EQU EB.AR.DESCRIPT TO 1|EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 | EB.AR.ORIGINAL.VALUE TO 4|
          +-----------------------+--------------------------+


          scala> val df3 = df2.flatMap( r => { (0 until r.size).map( i=> r.getString(i) ) })
          df3: org.apache.spark.sql.Dataset[String] = [value: string]

          scala> df3.show(false)
          +--------------------------+
          |value |
          +--------------------------+
          |EQU EB.AR.DESCRIPT TO 1 |
          |EB.AR.ASSET.CLASS TO 2 |
          |EB.AR.CURRENCY TO 3 |
          | EB.AR.ORIGINAL.VALUE TO 4|
          +--------------------------+


          scala> df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).show(false)
          +---+---------------------+
          |key|value |
          +---+---------------------+
          |1 |EQU EB.AR.DESCRIPT |
          |2 |EB.AR.ASSET.CLASS |
          |3 |EB.AR.CURRENCY |
          |4 | EB.AR.ORIGINAL.VALUE|
          +---+---------------------+


          If you want them as "map" column, then



          scala> val df4 = df3.select(regexp_extract($"value",""" TO (d+)s*$""",1).as("key"),regexp_replace($"value",""" TO (d+)s*$""","").as("value")).select(map($"key",$"value").as("kv"))
          df4: org.apache.spark.sql.DataFrame = [kv: map<string,string>]

          scala> df4.show(false)
          +----------------------------+
          |kv |
          +----------------------------+
          |[1 -> EQU EB.AR.DESCRIPT] |
          |[2 -> EB.AR.ASSET.CLASS] |
          |[3 -> EB.AR.CURRENCY] |
          |[4 -> EB.AR.ORIGINAL.VALUE]|
          +----------------------------+


          scala> df4.printSchema
          root
          |-- kv: map (nullable = false)
          | |-- key: string
          | |-- value: string (valueContainsNull = true)


          scala>






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Dec 31 '18 at 19:06

























          answered Dec 31 '18 at 14:29









          stack0114106stack0114106

          4,2032421




          4,2032421













          • which spark version you use?

            – kn3l
            Jan 2 at 5:01











          • im using spark 2.3 ..

            – stack0114106
            Jan 2 at 5:03



















          • which spark version you use?

            – kn3l
            Jan 2 at 5:01











          • im using spark 2.3 ..

            – stack0114106
            Jan 2 at 5:03

















          which spark version you use?

          – kn3l
          Jan 2 at 5:01





          which spark version you use?

          – kn3l
          Jan 2 at 5:01













          im using spark 2.3 ..

          – stack0114106
          Jan 2 at 5:03





          im using spark 2.3 ..

          – stack0114106
          Jan 2 at 5:03




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53985259%2fhow-to-build-map-rows-from-comma-delimited-strings%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          Npm cannot find a required file even through it is in the searched directory