Some problems in conditional probability
$begingroup$
A system process like $x_1 to x_2 to x_3 to ldots to x_n, (x_n =0text{ or }1)$ and there are abservations of the process$y_1, y_2 , y_3 , ldots y_n$. Assuming that the system has the following relation. $P(x_{n+1}=c_{n+1}|x_1=c_1,x_2=c_2.ldots)=begin{cases}1-lambda ,,&(c_{n+1}=c_n)\lambda,,&(c_{n+1}ne c_n)end{cases} tag1$Also, due to the noise, the observation of each $x$ has the relation $P(y_n=d|x_n=d')=begin{cases}1-rho &(d=d')\rho &(dne d')end{cases} tag2$ If $P(x_1=1)=p$, what is $P(x_2=1|y_1=1)$ and $P(x_2=1|y_1=1,y_2=1)$.
I am trying to solve it, but there is something I am not sure.
For $P(x_2=1|y_1=1)$, I think there is no relation between the event $y_1=1$ and $x_2=1$ (they are independent), so
$P(x_2=1|y_1=1)=P(x_2=1)=P(x_1=1)P(x_2=1|x_1=1)=p(1-lambda)$. However, I not sure if it is right or not.
In case of $P(x_2=1|y_1=1,y_2=1)$.
$P(x_2=1|y_1=1,y_2=1)\=dfrac{P(x_2=1,y_1=1,y_2=1)}{P(y_1=1,y_2=1)}\=dfrac{P(y_1=1)P(x_2=1,y_2=1)}{P(y_1=1)P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(x_2=0text{ or }1,y_2=1)}\=dfrac{P(x_2=1)}{P(x_2=0text{ or }1)}\=(1-p)lambda+p(1-lambda) $
probability
$endgroup$
add a comment |
$begingroup$
A system process like $x_1 to x_2 to x_3 to ldots to x_n, (x_n =0text{ or }1)$ and there are abservations of the process$y_1, y_2 , y_3 , ldots y_n$. Assuming that the system has the following relation. $P(x_{n+1}=c_{n+1}|x_1=c_1,x_2=c_2.ldots)=begin{cases}1-lambda ,,&(c_{n+1}=c_n)\lambda,,&(c_{n+1}ne c_n)end{cases} tag1$Also, due to the noise, the observation of each $x$ has the relation $P(y_n=d|x_n=d')=begin{cases}1-rho &(d=d')\rho &(dne d')end{cases} tag2$ If $P(x_1=1)=p$, what is $P(x_2=1|y_1=1)$ and $P(x_2=1|y_1=1,y_2=1)$.
I am trying to solve it, but there is something I am not sure.
For $P(x_2=1|y_1=1)$, I think there is no relation between the event $y_1=1$ and $x_2=1$ (they are independent), so
$P(x_2=1|y_1=1)=P(x_2=1)=P(x_1=1)P(x_2=1|x_1=1)=p(1-lambda)$. However, I not sure if it is right or not.
In case of $P(x_2=1|y_1=1,y_2=1)$.
$P(x_2=1|y_1=1,y_2=1)\=dfrac{P(x_2=1,y_1=1,y_2=1)}{P(y_1=1,y_2=1)}\=dfrac{P(y_1=1)P(x_2=1,y_2=1)}{P(y_1=1)P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(x_2=0text{ or }1,y_2=1)}\=dfrac{P(x_2=1)}{P(x_2=0text{ or }1)}\=(1-p)lambda+p(1-lambda) $
probability
$endgroup$
add a comment |
$begingroup$
A system process like $x_1 to x_2 to x_3 to ldots to x_n, (x_n =0text{ or }1)$ and there are abservations of the process$y_1, y_2 , y_3 , ldots y_n$. Assuming that the system has the following relation. $P(x_{n+1}=c_{n+1}|x_1=c_1,x_2=c_2.ldots)=begin{cases}1-lambda ,,&(c_{n+1}=c_n)\lambda,,&(c_{n+1}ne c_n)end{cases} tag1$Also, due to the noise, the observation of each $x$ has the relation $P(y_n=d|x_n=d')=begin{cases}1-rho &(d=d')\rho &(dne d')end{cases} tag2$ If $P(x_1=1)=p$, what is $P(x_2=1|y_1=1)$ and $P(x_2=1|y_1=1,y_2=1)$.
I am trying to solve it, but there is something I am not sure.
For $P(x_2=1|y_1=1)$, I think there is no relation between the event $y_1=1$ and $x_2=1$ (they are independent), so
$P(x_2=1|y_1=1)=P(x_2=1)=P(x_1=1)P(x_2=1|x_1=1)=p(1-lambda)$. However, I not sure if it is right or not.
In case of $P(x_2=1|y_1=1,y_2=1)$.
$P(x_2=1|y_1=1,y_2=1)\=dfrac{P(x_2=1,y_1=1,y_2=1)}{P(y_1=1,y_2=1)}\=dfrac{P(y_1=1)P(x_2=1,y_2=1)}{P(y_1=1)P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(x_2=0text{ or }1,y_2=1)}\=dfrac{P(x_2=1)}{P(x_2=0text{ or }1)}\=(1-p)lambda+p(1-lambda) $
probability
$endgroup$
A system process like $x_1 to x_2 to x_3 to ldots to x_n, (x_n =0text{ or }1)$ and there are abservations of the process$y_1, y_2 , y_3 , ldots y_n$. Assuming that the system has the following relation. $P(x_{n+1}=c_{n+1}|x_1=c_1,x_2=c_2.ldots)=begin{cases}1-lambda ,,&(c_{n+1}=c_n)\lambda,,&(c_{n+1}ne c_n)end{cases} tag1$Also, due to the noise, the observation of each $x$ has the relation $P(y_n=d|x_n=d')=begin{cases}1-rho &(d=d')\rho &(dne d')end{cases} tag2$ If $P(x_1=1)=p$, what is $P(x_2=1|y_1=1)$ and $P(x_2=1|y_1=1,y_2=1)$.
I am trying to solve it, but there is something I am not sure.
For $P(x_2=1|y_1=1)$, I think there is no relation between the event $y_1=1$ and $x_2=1$ (they are independent), so
$P(x_2=1|y_1=1)=P(x_2=1)=P(x_1=1)P(x_2=1|x_1=1)=p(1-lambda)$. However, I not sure if it is right or not.
In case of $P(x_2=1|y_1=1,y_2=1)$.
$P(x_2=1|y_1=1,y_2=1)\=dfrac{P(x_2=1,y_1=1,y_2=1)}{P(y_1=1,y_2=1)}\=dfrac{P(y_1=1)P(x_2=1,y_2=1)}{P(y_1=1)P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(y_2=1)}\=dfrac{P(x_2=1,y_2=1)}{P(x_2=0text{ or }1,y_2=1)}\=dfrac{P(x_2=1)}{P(x_2=0text{ or }1)}\=(1-p)lambda+p(1-lambda) $
probability
probability
asked Jan 23 at 5:07
Weihao HuangWeihao Huang
112
112
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084103%2fsome-problems-in-conditional-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084103%2fsome-problems-in-conditional-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown