How to do $arcsin(1/2)$ by hand?












0












$begingroup$


Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.



Thanks!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    But $sin pi/2$ is $1,$ not $1/2.$
    $endgroup$
    – coffeemath
    Jan 23 at 5:38






  • 2




    $begingroup$
    Draw a triangle and use the definition of the sine function.
    $endgroup$
    – John Douma
    Jan 23 at 5:55










  • $begingroup$
    When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
    $endgroup$
    – eyeballfrog
    Jan 23 at 6:52






  • 1




    $begingroup$
    @eyeballfrog I think a functional inverse was intended, not a reciprocal.
    $endgroup$
    – J.G.
    Jan 23 at 7:26










  • $begingroup$
    That's right @J.G.
    $endgroup$
    – ming
    Jan 23 at 20:22
















0












$begingroup$


Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.



Thanks!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    But $sin pi/2$ is $1,$ not $1/2.$
    $endgroup$
    – coffeemath
    Jan 23 at 5:38






  • 2




    $begingroup$
    Draw a triangle and use the definition of the sine function.
    $endgroup$
    – John Douma
    Jan 23 at 5:55










  • $begingroup$
    When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
    $endgroup$
    – eyeballfrog
    Jan 23 at 6:52






  • 1




    $begingroup$
    @eyeballfrog I think a functional inverse was intended, not a reciprocal.
    $endgroup$
    – J.G.
    Jan 23 at 7:26










  • $begingroup$
    That's right @J.G.
    $endgroup$
    – ming
    Jan 23 at 20:22














0












0








0


0



$begingroup$


Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.



Thanks!










share|cite|improve this question











$endgroup$




Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.



Thanks!







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 6:47









Ali

1,9812520




1,9812520










asked Jan 23 at 5:33









mingming

3906




3906








  • 2




    $begingroup$
    But $sin pi/2$ is $1,$ not $1/2.$
    $endgroup$
    – coffeemath
    Jan 23 at 5:38






  • 2




    $begingroup$
    Draw a triangle and use the definition of the sine function.
    $endgroup$
    – John Douma
    Jan 23 at 5:55










  • $begingroup$
    When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
    $endgroup$
    – eyeballfrog
    Jan 23 at 6:52






  • 1




    $begingroup$
    @eyeballfrog I think a functional inverse was intended, not a reciprocal.
    $endgroup$
    – J.G.
    Jan 23 at 7:26










  • $begingroup$
    That's right @J.G.
    $endgroup$
    – ming
    Jan 23 at 20:22














  • 2




    $begingroup$
    But $sin pi/2$ is $1,$ not $1/2.$
    $endgroup$
    – coffeemath
    Jan 23 at 5:38






  • 2




    $begingroup$
    Draw a triangle and use the definition of the sine function.
    $endgroup$
    – John Douma
    Jan 23 at 5:55










  • $begingroup$
    When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
    $endgroup$
    – eyeballfrog
    Jan 23 at 6:52






  • 1




    $begingroup$
    @eyeballfrog I think a functional inverse was intended, not a reciprocal.
    $endgroup$
    – J.G.
    Jan 23 at 7:26










  • $begingroup$
    That's right @J.G.
    $endgroup$
    – ming
    Jan 23 at 20:22








2




2




$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38




$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38




2




2




$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55




$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55












$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52




$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52




1




1




$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26




$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26












$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22




$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22










2 Answers
2






active

oldest

votes


















1












$begingroup$

Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$



    Thus, $arcsinfrac{1}{2}=30^{circ}.$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084121%2fhow-to-do-arcsin1-2-by-hand%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.






          share|cite|improve this answer









          $endgroup$



          Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 23 at 7:29









          J.G.J.G.

          29.7k22947




          29.7k22947























              0












              $begingroup$

              $sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$



              Thus, $arcsinfrac{1}{2}=30^{circ}.$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$



                Thus, $arcsinfrac{1}{2}=30^{circ}.$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$



                  Thus, $arcsinfrac{1}{2}=30^{circ}.$






                  share|cite|improve this answer









                  $endgroup$



                  $sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$



                  Thus, $arcsinfrac{1}{2}=30^{circ}.$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 23 at 7:24









                  Michael RozenbergMichael Rozenberg

                  108k1895200




                  108k1895200






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084121%2fhow-to-do-arcsin1-2-by-hand%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      'app-layout' is not a known element: how to share Component with different Modules

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      WPF add header to Image with URL pettitions [duplicate]