How to prove that $int_{0}^{infty}ln^2(x)sin(x^2)dx=frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2$












11












$begingroup$


Wolfram Alpha provides




$$int_{0}^{infty}ln^2(x)sin(x^2)dx=frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{1}$$




But I haven't figured out the way to verify this result.



I know Frullani's Integral
$$ln(x)= int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dt$$
I also know
$$int_{0}^{infty}sin(x^2)~dx=frac{1}{2}int_{0}^{infty}x^{-1/2}sin(x)~dx$$
Then,
$$begin{align}
int_{0}^{infty}ln^2(x)sin(x^2)dx&=int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)sin(x^2)~dx\
&=frac{1}{2}int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)frac{sin(x)}{sqrt{x}}dx\
&=frac{1}{2}int_{0}^{infty}int_{0}^{infty}int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}frac{e^{-n}-e^{-xn}}{n}frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t}-e^{-xt})(e^{-n}-e^{-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t-n}-e^{-xn-t}-e^{-xt-n}+e^{-xt-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt
end{align}$$

What should I do next?
There is also a general case




$$int_{0}^{infty}ln^2(x^a)sin(x^2)dx=frac{a^2}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{2}$$




But I think $(2)$ becomes easy to prove if we can prove $(1)$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Computer algebra solves this instantly: $frac{1}{32} sqrt{frac{pi }{2}} (2 gamma -pi +log (16))^2$. Is there really a need to perform this by hand? ted.com/talks/…
    $endgroup$
    – David G. Stork
    Jan 26 at 20:10










  • $begingroup$
    It is an interesting video. "Hand calculating procedures teach understanding."
    $endgroup$
    – Larry
    Jan 26 at 20:16










  • $begingroup$
    Did you actually watch the full video? One of Wolfram's key points was exposing the fallacy in "hand calculating procedures teach understanding." Very convincing.
    $endgroup$
    – David G. Stork
    Jan 26 at 20:29






  • 1




    $begingroup$
    @DavidG.Stork I entirely disagree. I personally am interested in knowing how to preform such manual calculations as they teach me new techniques which I can apply to other problems. Also, what is the point of knowing that $int_0^infty ln^2(x)sin(x^2)mathrm dx$ has a closed form (or exact evaluation instead of a decimal expansion) if one cannot prove it? Without a proof it is just a useless fact.
    $endgroup$
    – clathratus
    Jan 26 at 20:51






  • 2




    $begingroup$
    Ok, I see. That is actually a good point. I will keep that in mind.
    $endgroup$
    – Larry
    Jan 26 at 21:12
















11












$begingroup$


Wolfram Alpha provides




$$int_{0}^{infty}ln^2(x)sin(x^2)dx=frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{1}$$




But I haven't figured out the way to verify this result.



I know Frullani's Integral
$$ln(x)= int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dt$$
I also know
$$int_{0}^{infty}sin(x^2)~dx=frac{1}{2}int_{0}^{infty}x^{-1/2}sin(x)~dx$$
Then,
$$begin{align}
int_{0}^{infty}ln^2(x)sin(x^2)dx&=int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)sin(x^2)~dx\
&=frac{1}{2}int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)frac{sin(x)}{sqrt{x}}dx\
&=frac{1}{2}int_{0}^{infty}int_{0}^{infty}int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}frac{e^{-n}-e^{-xn}}{n}frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t}-e^{-xt})(e^{-n}-e^{-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t-n}-e^{-xn-t}-e^{-xt-n}+e^{-xt-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt
end{align}$$

What should I do next?
There is also a general case




$$int_{0}^{infty}ln^2(x^a)sin(x^2)dx=frac{a^2}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{2}$$




But I think $(2)$ becomes easy to prove if we can prove $(1)$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Computer algebra solves this instantly: $frac{1}{32} sqrt{frac{pi }{2}} (2 gamma -pi +log (16))^2$. Is there really a need to perform this by hand? ted.com/talks/…
    $endgroup$
    – David G. Stork
    Jan 26 at 20:10










  • $begingroup$
    It is an interesting video. "Hand calculating procedures teach understanding."
    $endgroup$
    – Larry
    Jan 26 at 20:16










  • $begingroup$
    Did you actually watch the full video? One of Wolfram's key points was exposing the fallacy in "hand calculating procedures teach understanding." Very convincing.
    $endgroup$
    – David G. Stork
    Jan 26 at 20:29






  • 1




    $begingroup$
    @DavidG.Stork I entirely disagree. I personally am interested in knowing how to preform such manual calculations as they teach me new techniques which I can apply to other problems. Also, what is the point of knowing that $int_0^infty ln^2(x)sin(x^2)mathrm dx$ has a closed form (or exact evaluation instead of a decimal expansion) if one cannot prove it? Without a proof it is just a useless fact.
    $endgroup$
    – clathratus
    Jan 26 at 20:51






  • 2




    $begingroup$
    Ok, I see. That is actually a good point. I will keep that in mind.
    $endgroup$
    – Larry
    Jan 26 at 21:12














11












11








11


3



$begingroup$


Wolfram Alpha provides




$$int_{0}^{infty}ln^2(x)sin(x^2)dx=frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{1}$$




But I haven't figured out the way to verify this result.



I know Frullani's Integral
$$ln(x)= int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dt$$
I also know
$$int_{0}^{infty}sin(x^2)~dx=frac{1}{2}int_{0}^{infty}x^{-1/2}sin(x)~dx$$
Then,
$$begin{align}
int_{0}^{infty}ln^2(x)sin(x^2)dx&=int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)sin(x^2)~dx\
&=frac{1}{2}int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)frac{sin(x)}{sqrt{x}}dx\
&=frac{1}{2}int_{0}^{infty}int_{0}^{infty}int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}frac{e^{-n}-e^{-xn}}{n}frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t}-e^{-xt})(e^{-n}-e^{-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t-n}-e^{-xn-t}-e^{-xt-n}+e^{-xt-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt
end{align}$$

What should I do next?
There is also a general case




$$int_{0}^{infty}ln^2(x^a)sin(x^2)dx=frac{a^2}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{2}$$




But I think $(2)$ becomes easy to prove if we can prove $(1)$.










share|cite|improve this question











$endgroup$




Wolfram Alpha provides




$$int_{0}^{infty}ln^2(x)sin(x^2)dx=frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{1}$$




But I haven't figured out the way to verify this result.



I know Frullani's Integral
$$ln(x)= int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dt$$
I also know
$$int_{0}^{infty}sin(x^2)~dx=frac{1}{2}int_{0}^{infty}x^{-1/2}sin(x)~dx$$
Then,
$$begin{align}
int_{0}^{infty}ln^2(x)sin(x^2)dx&=int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)sin(x^2)~dx\
&=frac{1}{2}int_{0}^{infty}left(int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}dtright)left(int_{0}^{infty}frac{e^{-n}-e^{-xn}}{n}dnright)frac{sin(x)}{sqrt{x}}dx\
&=frac{1}{2}int_{0}^{infty}int_{0}^{infty}int_{0}^{infty}frac{e^{-t}-e^{-xt}}{t}frac{e^{-n}-e^{-xn}}{n}frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t}-e^{-xt})(e^{-n}-e^{-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt\
&=frac{1}{2}int_{0}^{infty}frac{1}{t}int_{0}^{infty}frac{1}{n}int_{0}^{infty}(e^{-t-n}-e^{-xn-t}-e^{-xt-n}+e^{-xt-xn})frac{sin(x)}{sqrt{x}}~dx~dn~dt
end{align}$$

What should I do next?
There is also a general case




$$int_{0}^{infty}ln^2(x^a)sin(x^2)dx=frac{a^2}{32}sqrt{frac{pi}{2}}(2gamma-pi+ln16)^2tag{2}$$




But I think $(2)$ becomes easy to prove if we can prove $(1)$.







calculus integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 20:18









user

5,65111031




5,65111031










asked Jan 26 at 19:48









LarryLarry

2,53531131




2,53531131












  • $begingroup$
    Computer algebra solves this instantly: $frac{1}{32} sqrt{frac{pi }{2}} (2 gamma -pi +log (16))^2$. Is there really a need to perform this by hand? ted.com/talks/…
    $endgroup$
    – David G. Stork
    Jan 26 at 20:10










  • $begingroup$
    It is an interesting video. "Hand calculating procedures teach understanding."
    $endgroup$
    – Larry
    Jan 26 at 20:16










  • $begingroup$
    Did you actually watch the full video? One of Wolfram's key points was exposing the fallacy in "hand calculating procedures teach understanding." Very convincing.
    $endgroup$
    – David G. Stork
    Jan 26 at 20:29






  • 1




    $begingroup$
    @DavidG.Stork I entirely disagree. I personally am interested in knowing how to preform such manual calculations as they teach me new techniques which I can apply to other problems. Also, what is the point of knowing that $int_0^infty ln^2(x)sin(x^2)mathrm dx$ has a closed form (or exact evaluation instead of a decimal expansion) if one cannot prove it? Without a proof it is just a useless fact.
    $endgroup$
    – clathratus
    Jan 26 at 20:51






  • 2




    $begingroup$
    Ok, I see. That is actually a good point. I will keep that in mind.
    $endgroup$
    – Larry
    Jan 26 at 21:12


















  • $begingroup$
    Computer algebra solves this instantly: $frac{1}{32} sqrt{frac{pi }{2}} (2 gamma -pi +log (16))^2$. Is there really a need to perform this by hand? ted.com/talks/…
    $endgroup$
    – David G. Stork
    Jan 26 at 20:10










  • $begingroup$
    It is an interesting video. "Hand calculating procedures teach understanding."
    $endgroup$
    – Larry
    Jan 26 at 20:16










  • $begingroup$
    Did you actually watch the full video? One of Wolfram's key points was exposing the fallacy in "hand calculating procedures teach understanding." Very convincing.
    $endgroup$
    – David G. Stork
    Jan 26 at 20:29






  • 1




    $begingroup$
    @DavidG.Stork I entirely disagree. I personally am interested in knowing how to preform such manual calculations as they teach me new techniques which I can apply to other problems. Also, what is the point of knowing that $int_0^infty ln^2(x)sin(x^2)mathrm dx$ has a closed form (or exact evaluation instead of a decimal expansion) if one cannot prove it? Without a proof it is just a useless fact.
    $endgroup$
    – clathratus
    Jan 26 at 20:51






  • 2




    $begingroup$
    Ok, I see. That is actually a good point. I will keep that in mind.
    $endgroup$
    – Larry
    Jan 26 at 21:12
















$begingroup$
Computer algebra solves this instantly: $frac{1}{32} sqrt{frac{pi }{2}} (2 gamma -pi +log (16))^2$. Is there really a need to perform this by hand? ted.com/talks/…
$endgroup$
– David G. Stork
Jan 26 at 20:10




$begingroup$
Computer algebra solves this instantly: $frac{1}{32} sqrt{frac{pi }{2}} (2 gamma -pi +log (16))^2$. Is there really a need to perform this by hand? ted.com/talks/…
$endgroup$
– David G. Stork
Jan 26 at 20:10












$begingroup$
It is an interesting video. "Hand calculating procedures teach understanding."
$endgroup$
– Larry
Jan 26 at 20:16




$begingroup$
It is an interesting video. "Hand calculating procedures teach understanding."
$endgroup$
– Larry
Jan 26 at 20:16












$begingroup$
Did you actually watch the full video? One of Wolfram's key points was exposing the fallacy in "hand calculating procedures teach understanding." Very convincing.
$endgroup$
– David G. Stork
Jan 26 at 20:29




$begingroup$
Did you actually watch the full video? One of Wolfram's key points was exposing the fallacy in "hand calculating procedures teach understanding." Very convincing.
$endgroup$
– David G. Stork
Jan 26 at 20:29




1




1




$begingroup$
@DavidG.Stork I entirely disagree. I personally am interested in knowing how to preform such manual calculations as they teach me new techniques which I can apply to other problems. Also, what is the point of knowing that $int_0^infty ln^2(x)sin(x^2)mathrm dx$ has a closed form (or exact evaluation instead of a decimal expansion) if one cannot prove it? Without a proof it is just a useless fact.
$endgroup$
– clathratus
Jan 26 at 20:51




$begingroup$
@DavidG.Stork I entirely disagree. I personally am interested in knowing how to preform such manual calculations as they teach me new techniques which I can apply to other problems. Also, what is the point of knowing that $int_0^infty ln^2(x)sin(x^2)mathrm dx$ has a closed form (or exact evaluation instead of a decimal expansion) if one cannot prove it? Without a proof it is just a useless fact.
$endgroup$
– clathratus
Jan 26 at 20:51




2




2




$begingroup$
Ok, I see. That is actually a good point. I will keep that in mind.
$endgroup$
– Larry
Jan 26 at 21:12




$begingroup$
Ok, I see. That is actually a good point. I will keep that in mind.
$endgroup$
– Larry
Jan 26 at 21:12










5 Answers
5






active

oldest

votes


















6












$begingroup$

$$I=int_{0}^{infty}ln^2(x)sin(x^2)dx overset{x^2=t}=int_0^infty frac{1}{2sqrt t} ln^2 (sqrt t) sin t dt =frac18 int_0^infty t^{-1/2}sin t ln^2 t ,dt$$
Note that the last integral is the Mellin transform in $s=frac12 $ of the sine after being differentiated twice.



See for example here a proof for:
$$int_0^infty x^{s-1}sin x dx= Gamma(s) sinleft(frac{pi s}{2}right)$$
$$Rightarrow I=frac18frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)bigg|_{s=frac12}$$
It's not the end of the world to differentiate that twice since the digamma function comes in our help.



From the wiki page we have:
$Gamma'(x)=Gamma(x)psi(x)$
$$Rightarrow frac{d}{ds}Gamma(s) sinleft(frac{pi s}{2}right)=Gamma(s)psi(s)sinleft(frac{pi s}{2}right) +frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)$$
$$Rightarrow frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)=frac{d}{ds}Gamma(s)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)$$
$$=Gamma(x)psi(x)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)+Gamma(s)left(psi_1(x)sinleft(frac{pi s}{2}right)+frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)-frac{pi^2}{4}sinleft(frac{pi s}{2}right)right)$$
And now setting $s=frac12$ we get using $Gammaleft(frac12right)=sqrt{pi}$, $psileft(frac12 right)=-gamma -2ln 2 $,$ psi_1left(frac12right)=frac{pi^2}{2}$ the result.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Note that the identity used by @Zacky applied is a direct application of Ramanujan's Master Theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem
    $endgroup$
    – DavidG
    Jan 28 at 9:09



















5












$begingroup$

We have
$$ F(alpha)=int_{0}^{+infty} x^alpha sin(x^2),dx = frac{1}{2}int_{0}^{+infty} x^{alpha/2-1}sin(x),dx\=frac{1}{2Gamma(1-alpha/2)}int_{0}^{+infty} frac{ds}{s^{alpha/2}(s^2+1)} $$
by the properties of the Laplace transform. The last integral can be computed through the Beta and Gamma functions, producing
$$ F(alpha) = frac{1}{2},Gammaleft(frac{1+alpha}{2}right)sinleft(frac{pi}{4}(1+alpha)right) $$
for any $alpha$ such that $text{Re}(alpha)in(-3,1)$. In order to prove the claim, it is enough to apply $lim_{alphato 0}frac{d^2}{dalpha^2}$ to both sides of the last identity and recall the special values of $Gamma,psi$ and $psi'$ at $frac{1}{2}$.






share|cite|improve this answer









$endgroup$





















    4












    $begingroup$

    Let us rewrite your integral as
    $$int_0^infty ln^2(x)sin(x^2)dx=frac{1}{8}int_0^infty frac{ln^2(x)sin(x)}{sqrt{x}}dx$$
    To solve this integral, you can employ the following identity, which holds for any $pin (0,1)$:
    $$int_0^infty x^{p-1}sin(x)dx=Gamma(p)sin(pi p/2)$$
    The value of your integral can be obtained from this by differentiating both sides of this equation twice with respect to $p$, moving the derivative inside of the definite integral on the LHS, and making use of the known special values of the Digamma function.



    This can be done by hand, but it requires a lot of algebra and would be best left to a CAS, as suggested in the comments.






    share|cite|improve this answer









    $endgroup$





















      4












      $begingroup$

      Just a generalization of @Zacky's answer



      $$F(a)=int_0^{infty}log^2(x^a)sin(x^2)mathrm dx$$
      Since $log(x^a)=log(e^{alog x})=alog x$,
      $$F(a)=a^2int_0^{infty}log^2(x)sin(x^2)mathrm dx$$
      $$F(a)=a^2F(1)$$
      And as @Zacky showed,
      $$F(1)=frac18mathrm{D}^2_{s=frac12}Gamma(s)sinfrac{pi s}{2}=frac1{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$
      So
      $$F(a)=frac{a^2}{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$



      I will edit my answer to include a proof of my own once I find one.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Nice, I forgot the fact that $log(x^a)=alog(x)$.
        $endgroup$
        – Larry
        Jan 26 at 21:14










      • $begingroup$
        @Larry I legitimately can't tell if you're being sarcastic or not
        $endgroup$
        – clathratus
        Jan 26 at 21:15






      • 1




        $begingroup$
        I am not being sarcastic.
        $endgroup$
        – Larry
        Jan 26 at 21:18






      • 1




        $begingroup$
        @Larry Thank you for the clarification. You were very right when you mentioned that $(2)$ would be easy to prove once one had proven $(1)$.
        $endgroup$
        – clathratus
        Jan 26 at 21:20



















      3












      $begingroup$

      An alternative approach is to employ Feynman's Trick and Laplace Transforms to solve:



      begin{equation}
      I = int_0^inftyln^2(x)sinleft(x^2right):dx
      end{equation}



      We first observe that:



      begin{equation}
      I = int_0^inftyln^2(x)sinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2}int_0^infty x^ksinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k)
      end{equation}



      We proceed by solving $H(k)$. To do so, we introduce a new parameter $'t'$:



      begin{equation}
      J(t; k) = int_0^infty x^ksinleft(tx^2right):dx
      end{equation}



      (This is allowable through the Dominated Convergence Theorem). Thus:



      begin{equation}
      H(k) = lim_{trightarrow 1^+} J(t; k)
      end{equation}



      Using Fubini's Theorem we now take the Laplace Transform with respect to '$t$'



      begin{align}
      mathscr{L}_tleft[J(t;k) right] &= int_0^infty x^kmathscr{L}_tleft[sinleft(tx^2right)right]:dx = int_0^infty frac{x^{k + 2}}{s^2 + x^4}:dx
      end{align}



      As I address here we find this becomes:



      begin{align}
      mathscr{L}_tleft[J(t;k) right] &= frac{1}{4}cdot left(s^2right)^{frac{k + 2 + 1}{2} - 1} cdot Bleft(1 - frac{k + 2 + 1 }{4}, frac{k + 2 + 1 }{4} right) = frac{1}{4} s^{frac{k - 1}{2}} Bleft(1 - frac{k + 3}{4} , frac{k + 3}{4}right)
      end{align}



      Using the relationship between the Gamma and Beta Function we find:



      begin{equation}
      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} Gammaleft(1 - frac{k + 3}{4}right) Gammaleft( frac{k + 3}{4}right)
      end{equation}



      Using Euler's Reflection Formula we find:



      begin{equation}
      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}
      end{equation}



      Taking the inverse Laplace Transforms is rather tricky here. To evaluate recall that:



      begin{equation}
      I = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right]
      end{equation}



      In this process we solve for $H(k)$ using



      begin{equation}
      H(k) = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]
      end{equation}



      Thus, our definition of $I$ becomes:



      begin{align}
      I &= lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right] = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]right] \
      &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}mathscr{L}_tleft[J(t; k)right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right]
      end{align}



      Because I'm lazy, I used Wolframalpha to evaluate the second derivate at $0$:



      begin{align}
      I &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ frac{pi}{4}left( frac{3pi^2}{8sqrt{2}sqrt{s}} + frac{ln^2(s)}{2sqrt{2}sqrt{s}} + frac{piln(s)}{2sqrt{2}sqrt{s}}right)right] \
      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} mathscr{L}_s^{-1}left[ frac{1}{sqrt{s}}right] + frac{pi}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln^2(s)}{sqrt{s}}right]+ frac{pi^2}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln(s)}{sqrt{s}}right]right] \
      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}sqrt{t}}right] + frac{pi}{32sqrt{2}} left[ frac{
      left(psi^{(0)}left(frac{1}{2}right)-ln(t)right)^2 -frac{pi^2}{2}}{sqrt{pi}sqrt{t}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
      psi^{(0)}left(frac{1}{2}right)-ln(t)}{sqrt{pi}sqrt{t}}right]right] \
      &= frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
      psi^{(0)}left(frac{1}{2}right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
      psi^{(0)}left(frac{1}{2}right)}{sqrt{pi}}right]
      end{align}



      Noting that
      begin{equation}
      psi^{(0)}left(frac{1}{2}right) = -gamma - 2ln(2)
      end{equation}



      Where $gamma$ is the Euler–Mascheroni constant.



      Thus,



      begin{align}
      I = frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
      left(gamma + 2ln(2)right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
      gamma - 2ln(2)}{sqrt{pi}}right] = frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+4ln2)^2
      end{align}






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Very nice solution! I am a fan of your method.
        $endgroup$
        – clathratus
        Jan 28 at 16:07










      • $begingroup$
        Do you use a similar technique to evaluate $$F(n)=int_0^infty cos(x^n)mathrm dx$$
        $endgroup$
        – clathratus
        Feb 6 at 20:58










      • $begingroup$
        @clathratus You definitely can
        $endgroup$
        – DavidG
        Feb 7 at 0:09











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088677%2fhow-to-prove-that-int-0-infty-ln2x-sinx2dx-frac132-sqrt-frac%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      5 Answers
      5






      active

      oldest

      votes








      5 Answers
      5






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      $$I=int_{0}^{infty}ln^2(x)sin(x^2)dx overset{x^2=t}=int_0^infty frac{1}{2sqrt t} ln^2 (sqrt t) sin t dt =frac18 int_0^infty t^{-1/2}sin t ln^2 t ,dt$$
      Note that the last integral is the Mellin transform in $s=frac12 $ of the sine after being differentiated twice.



      See for example here a proof for:
      $$int_0^infty x^{s-1}sin x dx= Gamma(s) sinleft(frac{pi s}{2}right)$$
      $$Rightarrow I=frac18frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)bigg|_{s=frac12}$$
      It's not the end of the world to differentiate that twice since the digamma function comes in our help.



      From the wiki page we have:
      $Gamma'(x)=Gamma(x)psi(x)$
      $$Rightarrow frac{d}{ds}Gamma(s) sinleft(frac{pi s}{2}right)=Gamma(s)psi(s)sinleft(frac{pi s}{2}right) +frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)$$
      $$Rightarrow frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)=frac{d}{ds}Gamma(s)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)$$
      $$=Gamma(x)psi(x)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)+Gamma(s)left(psi_1(x)sinleft(frac{pi s}{2}right)+frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)-frac{pi^2}{4}sinleft(frac{pi s}{2}right)right)$$
      And now setting $s=frac12$ we get using $Gammaleft(frac12right)=sqrt{pi}$, $psileft(frac12 right)=-gamma -2ln 2 $,$ psi_1left(frac12right)=frac{pi^2}{2}$ the result.






      share|cite|improve this answer









      $endgroup$









      • 2




        $begingroup$
        Note that the identity used by @Zacky applied is a direct application of Ramanujan's Master Theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem
        $endgroup$
        – DavidG
        Jan 28 at 9:09
















      6












      $begingroup$

      $$I=int_{0}^{infty}ln^2(x)sin(x^2)dx overset{x^2=t}=int_0^infty frac{1}{2sqrt t} ln^2 (sqrt t) sin t dt =frac18 int_0^infty t^{-1/2}sin t ln^2 t ,dt$$
      Note that the last integral is the Mellin transform in $s=frac12 $ of the sine after being differentiated twice.



      See for example here a proof for:
      $$int_0^infty x^{s-1}sin x dx= Gamma(s) sinleft(frac{pi s}{2}right)$$
      $$Rightarrow I=frac18frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)bigg|_{s=frac12}$$
      It's not the end of the world to differentiate that twice since the digamma function comes in our help.



      From the wiki page we have:
      $Gamma'(x)=Gamma(x)psi(x)$
      $$Rightarrow frac{d}{ds}Gamma(s) sinleft(frac{pi s}{2}right)=Gamma(s)psi(s)sinleft(frac{pi s}{2}right) +frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)$$
      $$Rightarrow frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)=frac{d}{ds}Gamma(s)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)$$
      $$=Gamma(x)psi(x)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)+Gamma(s)left(psi_1(x)sinleft(frac{pi s}{2}right)+frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)-frac{pi^2}{4}sinleft(frac{pi s}{2}right)right)$$
      And now setting $s=frac12$ we get using $Gammaleft(frac12right)=sqrt{pi}$, $psileft(frac12 right)=-gamma -2ln 2 $,$ psi_1left(frac12right)=frac{pi^2}{2}$ the result.






      share|cite|improve this answer









      $endgroup$









      • 2




        $begingroup$
        Note that the identity used by @Zacky applied is a direct application of Ramanujan's Master Theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem
        $endgroup$
        – DavidG
        Jan 28 at 9:09














      6












      6








      6





      $begingroup$

      $$I=int_{0}^{infty}ln^2(x)sin(x^2)dx overset{x^2=t}=int_0^infty frac{1}{2sqrt t} ln^2 (sqrt t) sin t dt =frac18 int_0^infty t^{-1/2}sin t ln^2 t ,dt$$
      Note that the last integral is the Mellin transform in $s=frac12 $ of the sine after being differentiated twice.



      See for example here a proof for:
      $$int_0^infty x^{s-1}sin x dx= Gamma(s) sinleft(frac{pi s}{2}right)$$
      $$Rightarrow I=frac18frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)bigg|_{s=frac12}$$
      It's not the end of the world to differentiate that twice since the digamma function comes in our help.



      From the wiki page we have:
      $Gamma'(x)=Gamma(x)psi(x)$
      $$Rightarrow frac{d}{ds}Gamma(s) sinleft(frac{pi s}{2}right)=Gamma(s)psi(s)sinleft(frac{pi s}{2}right) +frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)$$
      $$Rightarrow frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)=frac{d}{ds}Gamma(s)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)$$
      $$=Gamma(x)psi(x)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)+Gamma(s)left(psi_1(x)sinleft(frac{pi s}{2}right)+frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)-frac{pi^2}{4}sinleft(frac{pi s}{2}right)right)$$
      And now setting $s=frac12$ we get using $Gammaleft(frac12right)=sqrt{pi}$, $psileft(frac12 right)=-gamma -2ln 2 $,$ psi_1left(frac12right)=frac{pi^2}{2}$ the result.






      share|cite|improve this answer









      $endgroup$



      $$I=int_{0}^{infty}ln^2(x)sin(x^2)dx overset{x^2=t}=int_0^infty frac{1}{2sqrt t} ln^2 (sqrt t) sin t dt =frac18 int_0^infty t^{-1/2}sin t ln^2 t ,dt$$
      Note that the last integral is the Mellin transform in $s=frac12 $ of the sine after being differentiated twice.



      See for example here a proof for:
      $$int_0^infty x^{s-1}sin x dx= Gamma(s) sinleft(frac{pi s}{2}right)$$
      $$Rightarrow I=frac18frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)bigg|_{s=frac12}$$
      It's not the end of the world to differentiate that twice since the digamma function comes in our help.



      From the wiki page we have:
      $Gamma'(x)=Gamma(x)psi(x)$
      $$Rightarrow frac{d}{ds}Gamma(s) sinleft(frac{pi s}{2}right)=Gamma(s)psi(s)sinleft(frac{pi s}{2}right) +frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)$$
      $$Rightarrow frac{d^2}{ds^2}Gamma(s) sinleft(frac{pi s}{2}right)=frac{d}{ds}Gamma(s)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)$$
      $$=Gamma(x)psi(x)left(psi(s)sinleft(frac{pi s}{2}right)+frac{pi}{2}cosleft(frac{pi s}{2}right)right)+Gamma(s)left(psi_1(x)sinleft(frac{pi s}{2}right)+frac{pi}{2}Gamma(s)cosleft(frac{pi s}{2}right)-frac{pi^2}{4}sinleft(frac{pi s}{2}right)right)$$
      And now setting $s=frac12$ we get using $Gammaleft(frac12right)=sqrt{pi}$, $psileft(frac12 right)=-gamma -2ln 2 $,$ psi_1left(frac12right)=frac{pi^2}{2}$ the result.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 26 at 20:24









      ZackyZacky

      7,89511061




      7,89511061








      • 2




        $begingroup$
        Note that the identity used by @Zacky applied is a direct application of Ramanujan's Master Theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem
        $endgroup$
        – DavidG
        Jan 28 at 9:09














      • 2




        $begingroup$
        Note that the identity used by @Zacky applied is a direct application of Ramanujan's Master Theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem
        $endgroup$
        – DavidG
        Jan 28 at 9:09








      2




      2




      $begingroup$
      Note that the identity used by @Zacky applied is a direct application of Ramanujan's Master Theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem
      $endgroup$
      – DavidG
      Jan 28 at 9:09




      $begingroup$
      Note that the identity used by @Zacky applied is a direct application of Ramanujan's Master Theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem
      $endgroup$
      – DavidG
      Jan 28 at 9:09











      5












      $begingroup$

      We have
      $$ F(alpha)=int_{0}^{+infty} x^alpha sin(x^2),dx = frac{1}{2}int_{0}^{+infty} x^{alpha/2-1}sin(x),dx\=frac{1}{2Gamma(1-alpha/2)}int_{0}^{+infty} frac{ds}{s^{alpha/2}(s^2+1)} $$
      by the properties of the Laplace transform. The last integral can be computed through the Beta and Gamma functions, producing
      $$ F(alpha) = frac{1}{2},Gammaleft(frac{1+alpha}{2}right)sinleft(frac{pi}{4}(1+alpha)right) $$
      for any $alpha$ such that $text{Re}(alpha)in(-3,1)$. In order to prove the claim, it is enough to apply $lim_{alphato 0}frac{d^2}{dalpha^2}$ to both sides of the last identity and recall the special values of $Gamma,psi$ and $psi'$ at $frac{1}{2}$.






      share|cite|improve this answer









      $endgroup$


















        5












        $begingroup$

        We have
        $$ F(alpha)=int_{0}^{+infty} x^alpha sin(x^2),dx = frac{1}{2}int_{0}^{+infty} x^{alpha/2-1}sin(x),dx\=frac{1}{2Gamma(1-alpha/2)}int_{0}^{+infty} frac{ds}{s^{alpha/2}(s^2+1)} $$
        by the properties of the Laplace transform. The last integral can be computed through the Beta and Gamma functions, producing
        $$ F(alpha) = frac{1}{2},Gammaleft(frac{1+alpha}{2}right)sinleft(frac{pi}{4}(1+alpha)right) $$
        for any $alpha$ such that $text{Re}(alpha)in(-3,1)$. In order to prove the claim, it is enough to apply $lim_{alphato 0}frac{d^2}{dalpha^2}$ to both sides of the last identity and recall the special values of $Gamma,psi$ and $psi'$ at $frac{1}{2}$.






        share|cite|improve this answer









        $endgroup$
















          5












          5








          5





          $begingroup$

          We have
          $$ F(alpha)=int_{0}^{+infty} x^alpha sin(x^2),dx = frac{1}{2}int_{0}^{+infty} x^{alpha/2-1}sin(x),dx\=frac{1}{2Gamma(1-alpha/2)}int_{0}^{+infty} frac{ds}{s^{alpha/2}(s^2+1)} $$
          by the properties of the Laplace transform. The last integral can be computed through the Beta and Gamma functions, producing
          $$ F(alpha) = frac{1}{2},Gammaleft(frac{1+alpha}{2}right)sinleft(frac{pi}{4}(1+alpha)right) $$
          for any $alpha$ such that $text{Re}(alpha)in(-3,1)$. In order to prove the claim, it is enough to apply $lim_{alphato 0}frac{d^2}{dalpha^2}$ to both sides of the last identity and recall the special values of $Gamma,psi$ and $psi'$ at $frac{1}{2}$.






          share|cite|improve this answer









          $endgroup$



          We have
          $$ F(alpha)=int_{0}^{+infty} x^alpha sin(x^2),dx = frac{1}{2}int_{0}^{+infty} x^{alpha/2-1}sin(x),dx\=frac{1}{2Gamma(1-alpha/2)}int_{0}^{+infty} frac{ds}{s^{alpha/2}(s^2+1)} $$
          by the properties of the Laplace transform. The last integral can be computed through the Beta and Gamma functions, producing
          $$ F(alpha) = frac{1}{2},Gammaleft(frac{1+alpha}{2}right)sinleft(frac{pi}{4}(1+alpha)right) $$
          for any $alpha$ such that $text{Re}(alpha)in(-3,1)$. In order to prove the claim, it is enough to apply $lim_{alphato 0}frac{d^2}{dalpha^2}$ to both sides of the last identity and recall the special values of $Gamma,psi$ and $psi'$ at $frac{1}{2}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 26 at 20:23









          Jack D'AurizioJack D'Aurizio

          291k33284669




          291k33284669























              4












              $begingroup$

              Let us rewrite your integral as
              $$int_0^infty ln^2(x)sin(x^2)dx=frac{1}{8}int_0^infty frac{ln^2(x)sin(x)}{sqrt{x}}dx$$
              To solve this integral, you can employ the following identity, which holds for any $pin (0,1)$:
              $$int_0^infty x^{p-1}sin(x)dx=Gamma(p)sin(pi p/2)$$
              The value of your integral can be obtained from this by differentiating both sides of this equation twice with respect to $p$, moving the derivative inside of the definite integral on the LHS, and making use of the known special values of the Digamma function.



              This can be done by hand, but it requires a lot of algebra and would be best left to a CAS, as suggested in the comments.






              share|cite|improve this answer









              $endgroup$


















                4












                $begingroup$

                Let us rewrite your integral as
                $$int_0^infty ln^2(x)sin(x^2)dx=frac{1}{8}int_0^infty frac{ln^2(x)sin(x)}{sqrt{x}}dx$$
                To solve this integral, you can employ the following identity, which holds for any $pin (0,1)$:
                $$int_0^infty x^{p-1}sin(x)dx=Gamma(p)sin(pi p/2)$$
                The value of your integral can be obtained from this by differentiating both sides of this equation twice with respect to $p$, moving the derivative inside of the definite integral on the LHS, and making use of the known special values of the Digamma function.



                This can be done by hand, but it requires a lot of algebra and would be best left to a CAS, as suggested in the comments.






                share|cite|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  Let us rewrite your integral as
                  $$int_0^infty ln^2(x)sin(x^2)dx=frac{1}{8}int_0^infty frac{ln^2(x)sin(x)}{sqrt{x}}dx$$
                  To solve this integral, you can employ the following identity, which holds for any $pin (0,1)$:
                  $$int_0^infty x^{p-1}sin(x)dx=Gamma(p)sin(pi p/2)$$
                  The value of your integral can be obtained from this by differentiating both sides of this equation twice with respect to $p$, moving the derivative inside of the definite integral on the LHS, and making use of the known special values of the Digamma function.



                  This can be done by hand, but it requires a lot of algebra and would be best left to a CAS, as suggested in the comments.






                  share|cite|improve this answer









                  $endgroup$



                  Let us rewrite your integral as
                  $$int_0^infty ln^2(x)sin(x^2)dx=frac{1}{8}int_0^infty frac{ln^2(x)sin(x)}{sqrt{x}}dx$$
                  To solve this integral, you can employ the following identity, which holds for any $pin (0,1)$:
                  $$int_0^infty x^{p-1}sin(x)dx=Gamma(p)sin(pi p/2)$$
                  The value of your integral can be obtained from this by differentiating both sides of this equation twice with respect to $p$, moving the derivative inside of the definite integral on the LHS, and making use of the known special values of the Digamma function.



                  This can be done by hand, but it requires a lot of algebra and would be best left to a CAS, as suggested in the comments.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 26 at 20:17









                  FrpzzdFrpzzd

                  23k841110




                  23k841110























                      4












                      $begingroup$

                      Just a generalization of @Zacky's answer



                      $$F(a)=int_0^{infty}log^2(x^a)sin(x^2)mathrm dx$$
                      Since $log(x^a)=log(e^{alog x})=alog x$,
                      $$F(a)=a^2int_0^{infty}log^2(x)sin(x^2)mathrm dx$$
                      $$F(a)=a^2F(1)$$
                      And as @Zacky showed,
                      $$F(1)=frac18mathrm{D}^2_{s=frac12}Gamma(s)sinfrac{pi s}{2}=frac1{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$
                      So
                      $$F(a)=frac{a^2}{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$



                      I will edit my answer to include a proof of my own once I find one.






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        Nice, I forgot the fact that $log(x^a)=alog(x)$.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:14










                      • $begingroup$
                        @Larry I legitimately can't tell if you're being sarcastic or not
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:15






                      • 1




                        $begingroup$
                        I am not being sarcastic.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:18






                      • 1




                        $begingroup$
                        @Larry Thank you for the clarification. You were very right when you mentioned that $(2)$ would be easy to prove once one had proven $(1)$.
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:20
















                      4












                      $begingroup$

                      Just a generalization of @Zacky's answer



                      $$F(a)=int_0^{infty}log^2(x^a)sin(x^2)mathrm dx$$
                      Since $log(x^a)=log(e^{alog x})=alog x$,
                      $$F(a)=a^2int_0^{infty}log^2(x)sin(x^2)mathrm dx$$
                      $$F(a)=a^2F(1)$$
                      And as @Zacky showed,
                      $$F(1)=frac18mathrm{D}^2_{s=frac12}Gamma(s)sinfrac{pi s}{2}=frac1{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$
                      So
                      $$F(a)=frac{a^2}{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$



                      I will edit my answer to include a proof of my own once I find one.






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        Nice, I forgot the fact that $log(x^a)=alog(x)$.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:14










                      • $begingroup$
                        @Larry I legitimately can't tell if you're being sarcastic or not
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:15






                      • 1




                        $begingroup$
                        I am not being sarcastic.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:18






                      • 1




                        $begingroup$
                        @Larry Thank you for the clarification. You were very right when you mentioned that $(2)$ would be easy to prove once one had proven $(1)$.
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:20














                      4












                      4








                      4





                      $begingroup$

                      Just a generalization of @Zacky's answer



                      $$F(a)=int_0^{infty}log^2(x^a)sin(x^2)mathrm dx$$
                      Since $log(x^a)=log(e^{alog x})=alog x$,
                      $$F(a)=a^2int_0^{infty}log^2(x)sin(x^2)mathrm dx$$
                      $$F(a)=a^2F(1)$$
                      And as @Zacky showed,
                      $$F(1)=frac18mathrm{D}^2_{s=frac12}Gamma(s)sinfrac{pi s}{2}=frac1{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$
                      So
                      $$F(a)=frac{a^2}{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$



                      I will edit my answer to include a proof of my own once I find one.






                      share|cite|improve this answer









                      $endgroup$



                      Just a generalization of @Zacky's answer



                      $$F(a)=int_0^{infty}log^2(x^a)sin(x^2)mathrm dx$$
                      Since $log(x^a)=log(e^{alog x})=alog x$,
                      $$F(a)=a^2int_0^{infty}log^2(x)sin(x^2)mathrm dx$$
                      $$F(a)=a^2F(1)$$
                      And as @Zacky showed,
                      $$F(1)=frac18mathrm{D}^2_{s=frac12}Gamma(s)sinfrac{pi s}{2}=frac1{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$
                      So
                      $$F(a)=frac{a^2}{32}sqrt{fracpi2}(2gamma-pi+log16)^2$$



                      I will edit my answer to include a proof of my own once I find one.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 26 at 21:05









                      clathratusclathratus

                      5,1701338




                      5,1701338












                      • $begingroup$
                        Nice, I forgot the fact that $log(x^a)=alog(x)$.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:14










                      • $begingroup$
                        @Larry I legitimately can't tell if you're being sarcastic or not
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:15






                      • 1




                        $begingroup$
                        I am not being sarcastic.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:18






                      • 1




                        $begingroup$
                        @Larry Thank you for the clarification. You were very right when you mentioned that $(2)$ would be easy to prove once one had proven $(1)$.
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:20


















                      • $begingroup$
                        Nice, I forgot the fact that $log(x^a)=alog(x)$.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:14










                      • $begingroup$
                        @Larry I legitimately can't tell if you're being sarcastic or not
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:15






                      • 1




                        $begingroup$
                        I am not being sarcastic.
                        $endgroup$
                        – Larry
                        Jan 26 at 21:18






                      • 1




                        $begingroup$
                        @Larry Thank you for the clarification. You were very right when you mentioned that $(2)$ would be easy to prove once one had proven $(1)$.
                        $endgroup$
                        – clathratus
                        Jan 26 at 21:20
















                      $begingroup$
                      Nice, I forgot the fact that $log(x^a)=alog(x)$.
                      $endgroup$
                      – Larry
                      Jan 26 at 21:14




                      $begingroup$
                      Nice, I forgot the fact that $log(x^a)=alog(x)$.
                      $endgroup$
                      – Larry
                      Jan 26 at 21:14












                      $begingroup$
                      @Larry I legitimately can't tell if you're being sarcastic or not
                      $endgroup$
                      – clathratus
                      Jan 26 at 21:15




                      $begingroup$
                      @Larry I legitimately can't tell if you're being sarcastic or not
                      $endgroup$
                      – clathratus
                      Jan 26 at 21:15




                      1




                      1




                      $begingroup$
                      I am not being sarcastic.
                      $endgroup$
                      – Larry
                      Jan 26 at 21:18




                      $begingroup$
                      I am not being sarcastic.
                      $endgroup$
                      – Larry
                      Jan 26 at 21:18




                      1




                      1




                      $begingroup$
                      @Larry Thank you for the clarification. You were very right when you mentioned that $(2)$ would be easy to prove once one had proven $(1)$.
                      $endgroup$
                      – clathratus
                      Jan 26 at 21:20




                      $begingroup$
                      @Larry Thank you for the clarification. You were very right when you mentioned that $(2)$ would be easy to prove once one had proven $(1)$.
                      $endgroup$
                      – clathratus
                      Jan 26 at 21:20











                      3












                      $begingroup$

                      An alternative approach is to employ Feynman's Trick and Laplace Transforms to solve:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx
                      end{equation}



                      We first observe that:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2}int_0^infty x^ksinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k)
                      end{equation}



                      We proceed by solving $H(k)$. To do so, we introduce a new parameter $'t'$:



                      begin{equation}
                      J(t; k) = int_0^infty x^ksinleft(tx^2right):dx
                      end{equation}



                      (This is allowable through the Dominated Convergence Theorem). Thus:



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} J(t; k)
                      end{equation}



                      Using Fubini's Theorem we now take the Laplace Transform with respect to '$t$'



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= int_0^infty x^kmathscr{L}_tleft[sinleft(tx^2right)right]:dx = int_0^infty frac{x^{k + 2}}{s^2 + x^4}:dx
                      end{align}



                      As I address here we find this becomes:



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= frac{1}{4}cdot left(s^2right)^{frac{k + 2 + 1}{2} - 1} cdot Bleft(1 - frac{k + 2 + 1 }{4}, frac{k + 2 + 1 }{4} right) = frac{1}{4} s^{frac{k - 1}{2}} Bleft(1 - frac{k + 3}{4} , frac{k + 3}{4}right)
                      end{align}



                      Using the relationship between the Gamma and Beta Function we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} Gammaleft(1 - frac{k + 3}{4}right) Gammaleft( frac{k + 3}{4}right)
                      end{equation}



                      Using Euler's Reflection Formula we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}
                      end{equation}



                      Taking the inverse Laplace Transforms is rather tricky here. To evaluate recall that:



                      begin{equation}
                      I = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right]
                      end{equation}



                      In this process we solve for $H(k)$ using



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]
                      end{equation}



                      Thus, our definition of $I$ becomes:



                      begin{align}
                      I &= lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right] = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]right] \
                      &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}mathscr{L}_tleft[J(t; k)right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right]
                      end{align}



                      Because I'm lazy, I used Wolframalpha to evaluate the second derivate at $0$:



                      begin{align}
                      I &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ frac{pi}{4}left( frac{3pi^2}{8sqrt{2}sqrt{s}} + frac{ln^2(s)}{2sqrt{2}sqrt{s}} + frac{piln(s)}{2sqrt{2}sqrt{s}}right)right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} mathscr{L}_s^{-1}left[ frac{1}{sqrt{s}}right] + frac{pi}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln^2(s)}{sqrt{s}}right]+ frac{pi^2}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln(s)}{sqrt{s}}right]right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}sqrt{t}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(psi^{(0)}left(frac{1}{2}right)-ln(t)right)^2 -frac{pi^2}{2}}{sqrt{pi}sqrt{t}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)-ln(t)}{sqrt{pi}sqrt{t}}right]right] \
                      &= frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)}{sqrt{pi}}right]
                      end{align}



                      Noting that
                      begin{equation}
                      psi^{(0)}left(frac{1}{2}right) = -gamma - 2ln(2)
                      end{equation}



                      Where $gamma$ is the Euler–Mascheroni constant.



                      Thus,



                      begin{align}
                      I = frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(gamma + 2ln(2)right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      gamma - 2ln(2)}{sqrt{pi}}right] = frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+4ln2)^2
                      end{align}






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Very nice solution! I am a fan of your method.
                        $endgroup$
                        – clathratus
                        Jan 28 at 16:07










                      • $begingroup$
                        Do you use a similar technique to evaluate $$F(n)=int_0^infty cos(x^n)mathrm dx$$
                        $endgroup$
                        – clathratus
                        Feb 6 at 20:58










                      • $begingroup$
                        @clathratus You definitely can
                        $endgroup$
                        – DavidG
                        Feb 7 at 0:09
















                      3












                      $begingroup$

                      An alternative approach is to employ Feynman's Trick and Laplace Transforms to solve:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx
                      end{equation}



                      We first observe that:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2}int_0^infty x^ksinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k)
                      end{equation}



                      We proceed by solving $H(k)$. To do so, we introduce a new parameter $'t'$:



                      begin{equation}
                      J(t; k) = int_0^infty x^ksinleft(tx^2right):dx
                      end{equation}



                      (This is allowable through the Dominated Convergence Theorem). Thus:



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} J(t; k)
                      end{equation}



                      Using Fubini's Theorem we now take the Laplace Transform with respect to '$t$'



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= int_0^infty x^kmathscr{L}_tleft[sinleft(tx^2right)right]:dx = int_0^infty frac{x^{k + 2}}{s^2 + x^4}:dx
                      end{align}



                      As I address here we find this becomes:



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= frac{1}{4}cdot left(s^2right)^{frac{k + 2 + 1}{2} - 1} cdot Bleft(1 - frac{k + 2 + 1 }{4}, frac{k + 2 + 1 }{4} right) = frac{1}{4} s^{frac{k - 1}{2}} Bleft(1 - frac{k + 3}{4} , frac{k + 3}{4}right)
                      end{align}



                      Using the relationship between the Gamma and Beta Function we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} Gammaleft(1 - frac{k + 3}{4}right) Gammaleft( frac{k + 3}{4}right)
                      end{equation}



                      Using Euler's Reflection Formula we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}
                      end{equation}



                      Taking the inverse Laplace Transforms is rather tricky here. To evaluate recall that:



                      begin{equation}
                      I = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right]
                      end{equation}



                      In this process we solve for $H(k)$ using



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]
                      end{equation}



                      Thus, our definition of $I$ becomes:



                      begin{align}
                      I &= lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right] = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]right] \
                      &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}mathscr{L}_tleft[J(t; k)right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right]
                      end{align}



                      Because I'm lazy, I used Wolframalpha to evaluate the second derivate at $0$:



                      begin{align}
                      I &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ frac{pi}{4}left( frac{3pi^2}{8sqrt{2}sqrt{s}} + frac{ln^2(s)}{2sqrt{2}sqrt{s}} + frac{piln(s)}{2sqrt{2}sqrt{s}}right)right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} mathscr{L}_s^{-1}left[ frac{1}{sqrt{s}}right] + frac{pi}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln^2(s)}{sqrt{s}}right]+ frac{pi^2}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln(s)}{sqrt{s}}right]right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}sqrt{t}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(psi^{(0)}left(frac{1}{2}right)-ln(t)right)^2 -frac{pi^2}{2}}{sqrt{pi}sqrt{t}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)-ln(t)}{sqrt{pi}sqrt{t}}right]right] \
                      &= frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)}{sqrt{pi}}right]
                      end{align}



                      Noting that
                      begin{equation}
                      psi^{(0)}left(frac{1}{2}right) = -gamma - 2ln(2)
                      end{equation}



                      Where $gamma$ is the Euler–Mascheroni constant.



                      Thus,



                      begin{align}
                      I = frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(gamma + 2ln(2)right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      gamma - 2ln(2)}{sqrt{pi}}right] = frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+4ln2)^2
                      end{align}






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Very nice solution! I am a fan of your method.
                        $endgroup$
                        – clathratus
                        Jan 28 at 16:07










                      • $begingroup$
                        Do you use a similar technique to evaluate $$F(n)=int_0^infty cos(x^n)mathrm dx$$
                        $endgroup$
                        – clathratus
                        Feb 6 at 20:58










                      • $begingroup$
                        @clathratus You definitely can
                        $endgroup$
                        – DavidG
                        Feb 7 at 0:09














                      3












                      3








                      3





                      $begingroup$

                      An alternative approach is to employ Feynman's Trick and Laplace Transforms to solve:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx
                      end{equation}



                      We first observe that:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2}int_0^infty x^ksinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k)
                      end{equation}



                      We proceed by solving $H(k)$. To do so, we introduce a new parameter $'t'$:



                      begin{equation}
                      J(t; k) = int_0^infty x^ksinleft(tx^2right):dx
                      end{equation}



                      (This is allowable through the Dominated Convergence Theorem). Thus:



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} J(t; k)
                      end{equation}



                      Using Fubini's Theorem we now take the Laplace Transform with respect to '$t$'



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= int_0^infty x^kmathscr{L}_tleft[sinleft(tx^2right)right]:dx = int_0^infty frac{x^{k + 2}}{s^2 + x^4}:dx
                      end{align}



                      As I address here we find this becomes:



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= frac{1}{4}cdot left(s^2right)^{frac{k + 2 + 1}{2} - 1} cdot Bleft(1 - frac{k + 2 + 1 }{4}, frac{k + 2 + 1 }{4} right) = frac{1}{4} s^{frac{k - 1}{2}} Bleft(1 - frac{k + 3}{4} , frac{k + 3}{4}right)
                      end{align}



                      Using the relationship between the Gamma and Beta Function we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} Gammaleft(1 - frac{k + 3}{4}right) Gammaleft( frac{k + 3}{4}right)
                      end{equation}



                      Using Euler's Reflection Formula we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}
                      end{equation}



                      Taking the inverse Laplace Transforms is rather tricky here. To evaluate recall that:



                      begin{equation}
                      I = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right]
                      end{equation}



                      In this process we solve for $H(k)$ using



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]
                      end{equation}



                      Thus, our definition of $I$ becomes:



                      begin{align}
                      I &= lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right] = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]right] \
                      &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}mathscr{L}_tleft[J(t; k)right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right]
                      end{align}



                      Because I'm lazy, I used Wolframalpha to evaluate the second derivate at $0$:



                      begin{align}
                      I &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ frac{pi}{4}left( frac{3pi^2}{8sqrt{2}sqrt{s}} + frac{ln^2(s)}{2sqrt{2}sqrt{s}} + frac{piln(s)}{2sqrt{2}sqrt{s}}right)right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} mathscr{L}_s^{-1}left[ frac{1}{sqrt{s}}right] + frac{pi}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln^2(s)}{sqrt{s}}right]+ frac{pi^2}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln(s)}{sqrt{s}}right]right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}sqrt{t}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(psi^{(0)}left(frac{1}{2}right)-ln(t)right)^2 -frac{pi^2}{2}}{sqrt{pi}sqrt{t}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)-ln(t)}{sqrt{pi}sqrt{t}}right]right] \
                      &= frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)}{sqrt{pi}}right]
                      end{align}



                      Noting that
                      begin{equation}
                      psi^{(0)}left(frac{1}{2}right) = -gamma - 2ln(2)
                      end{equation}



                      Where $gamma$ is the Euler–Mascheroni constant.



                      Thus,



                      begin{align}
                      I = frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(gamma + 2ln(2)right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      gamma - 2ln(2)}{sqrt{pi}}right] = frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+4ln2)^2
                      end{align}






                      share|cite|improve this answer











                      $endgroup$



                      An alternative approach is to employ Feynman's Trick and Laplace Transforms to solve:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx
                      end{equation}



                      We first observe that:



                      begin{equation}
                      I = int_0^inftyln^2(x)sinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2}int_0^infty x^ksinleft(x^2right):dx = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k)
                      end{equation}



                      We proceed by solving $H(k)$. To do so, we introduce a new parameter $'t'$:



                      begin{equation}
                      J(t; k) = int_0^infty x^ksinleft(tx^2right):dx
                      end{equation}



                      (This is allowable through the Dominated Convergence Theorem). Thus:



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} J(t; k)
                      end{equation}



                      Using Fubini's Theorem we now take the Laplace Transform with respect to '$t$'



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= int_0^infty x^kmathscr{L}_tleft[sinleft(tx^2right)right]:dx = int_0^infty frac{x^{k + 2}}{s^2 + x^4}:dx
                      end{align}



                      As I address here we find this becomes:



                      begin{align}
                      mathscr{L}_tleft[J(t;k) right] &= frac{1}{4}cdot left(s^2right)^{frac{k + 2 + 1}{2} - 1} cdot Bleft(1 - frac{k + 2 + 1 }{4}, frac{k + 2 + 1 }{4} right) = frac{1}{4} s^{frac{k - 1}{2}} Bleft(1 - frac{k + 3}{4} , frac{k + 3}{4}right)
                      end{align}



                      Using the relationship between the Gamma and Beta Function we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} Gammaleft(1 - frac{k + 3}{4}right) Gammaleft( frac{k + 3}{4}right)
                      end{equation}



                      Using Euler's Reflection Formula we find:



                      begin{equation}
                      mathscr{L}_tleft[J(t;k) right] = frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}
                      end{equation}



                      Taking the inverse Laplace Transforms is rather tricky here. To evaluate recall that:



                      begin{equation}
                      I = lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right]
                      end{equation}



                      In this process we solve for $H(k)$ using



                      begin{equation}
                      H(k) = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]
                      end{equation}



                      Thus, our definition of $I$ becomes:



                      begin{align}
                      I &= lim_{krightarrow 0^+} frac{d^2}{dk^2} H(k) = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} J(t;k)right] = lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[mathscr{L}_tleft[J(t; k)right]right]right] \
                      &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}mathscr{L}_tleft[J(t; k)right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right]
                      end{align}



                      Because I'm lazy, I used Wolframalpha to evaluate the second derivate at $0$:



                      begin{align}
                      I &= lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ lim_{krightarrow 0^+} frac{d^2}{dk^2}left[ frac{1}{4} s^{frac{k - 1}{2}} frac{pi}{sinleft(pileft(frac{k + 3}{4}right) right)}right]right] = lim_{trightarrow 1^+} mathscr{L}_s^{-1}left[ frac{pi}{4}left( frac{3pi^2}{8sqrt{2}sqrt{s}} + frac{ln^2(s)}{2sqrt{2}sqrt{s}} + frac{piln(s)}{2sqrt{2}sqrt{s}}right)right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} mathscr{L}_s^{-1}left[ frac{1}{sqrt{s}}right] + frac{pi}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln^2(s)}{sqrt{s}}right]+ frac{pi^2}{8sqrt{2}} mathscr{L}_s^{-1}left[ frac{ln(s)}{sqrt{s}}right]right] \
                      &= lim_{trightarrow 1^+} left[ frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}sqrt{t}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(psi^{(0)}left(frac{1}{2}right)-ln(t)right)^2 -frac{pi^2}{2}}{sqrt{pi}sqrt{t}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)-ln(t)}{sqrt{pi}sqrt{t}}right]right] \
                      &= frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      psi^{(0)}left(frac{1}{2}right)}{sqrt{pi}}right]
                      end{align}



                      Noting that
                      begin{equation}
                      psi^{(0)}left(frac{1}{2}right) = -gamma - 2ln(2)
                      end{equation}



                      Where $gamma$ is the Euler–Mascheroni constant.



                      Thus,



                      begin{align}
                      I = frac{3pi^3}{32sqrt{2}} left[ frac{1}{sqrt{pi}}right] + frac{pi}{32sqrt{2}} left[ frac{
                      left(gamma + 2ln(2)right)^2 -frac{pi^2}{2}}{sqrt{pi}}right]+ frac{pi^2}{16sqrt{2}} left[ frac{
                      gamma - 2ln(2)}{sqrt{pi}}right] = frac{1}{32}sqrt{frac{pi}{2}}(2gamma-pi+4ln2)^2
                      end{align}







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 31 at 12:44

























                      answered Jan 28 at 12:51









                      DavidGDavidG

                      1




                      1












                      • $begingroup$
                        Very nice solution! I am a fan of your method.
                        $endgroup$
                        – clathratus
                        Jan 28 at 16:07










                      • $begingroup$
                        Do you use a similar technique to evaluate $$F(n)=int_0^infty cos(x^n)mathrm dx$$
                        $endgroup$
                        – clathratus
                        Feb 6 at 20:58










                      • $begingroup$
                        @clathratus You definitely can
                        $endgroup$
                        – DavidG
                        Feb 7 at 0:09


















                      • $begingroup$
                        Very nice solution! I am a fan of your method.
                        $endgroup$
                        – clathratus
                        Jan 28 at 16:07










                      • $begingroup$
                        Do you use a similar technique to evaluate $$F(n)=int_0^infty cos(x^n)mathrm dx$$
                        $endgroup$
                        – clathratus
                        Feb 6 at 20:58










                      • $begingroup$
                        @clathratus You definitely can
                        $endgroup$
                        – DavidG
                        Feb 7 at 0:09
















                      $begingroup$
                      Very nice solution! I am a fan of your method.
                      $endgroup$
                      – clathratus
                      Jan 28 at 16:07




                      $begingroup$
                      Very nice solution! I am a fan of your method.
                      $endgroup$
                      – clathratus
                      Jan 28 at 16:07












                      $begingroup$
                      Do you use a similar technique to evaluate $$F(n)=int_0^infty cos(x^n)mathrm dx$$
                      $endgroup$
                      – clathratus
                      Feb 6 at 20:58




                      $begingroup$
                      Do you use a similar technique to evaluate $$F(n)=int_0^infty cos(x^n)mathrm dx$$
                      $endgroup$
                      – clathratus
                      Feb 6 at 20:58












                      $begingroup$
                      @clathratus You definitely can
                      $endgroup$
                      – DavidG
                      Feb 7 at 0:09




                      $begingroup$
                      @clathratus You definitely can
                      $endgroup$
                      – DavidG
                      Feb 7 at 0:09


















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088677%2fhow-to-prove-that-int-0-infty-ln2x-sinx2dx-frac132-sqrt-frac%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith