If $frac{∂v}{∂t}=fracpartial{∂y}left(frac{∂v}{∂y}+h'vright)$ with $v(0,y)=v_0(y)$ and $int...
$begingroup$
Suppose $v:[0,infty)timesmathbb Rtomathbb R$ is a solution of $$frac{partial v}{partial t}=fracpartial{partial y}left(frac{partial v}{partial y}+h'vright);,;;;v(0,y)=v_0(y)$$ for some $hin C^1(mathbb R)$ and $v_0in C^0(mathbb R)$ with $$int v_0(y):{rm d}y=1.tag1$$
Why are we able to conclude $$int v(t,y):{rm d}y=1tag2$$ for all $tge0$?
integration pde
$endgroup$
add a comment |
$begingroup$
Suppose $v:[0,infty)timesmathbb Rtomathbb R$ is a solution of $$frac{partial v}{partial t}=fracpartial{partial y}left(frac{partial v}{partial y}+h'vright);,;;;v(0,y)=v_0(y)$$ for some $hin C^1(mathbb R)$ and $v_0in C^0(mathbb R)$ with $$int v_0(y):{rm d}y=1.tag1$$
Why are we able to conclude $$int v(t,y):{rm d}y=1tag2$$ for all $tge0$?
integration pde
$endgroup$
add a comment |
$begingroup$
Suppose $v:[0,infty)timesmathbb Rtomathbb R$ is a solution of $$frac{partial v}{partial t}=fracpartial{partial y}left(frac{partial v}{partial y}+h'vright);,;;;v(0,y)=v_0(y)$$ for some $hin C^1(mathbb R)$ and $v_0in C^0(mathbb R)$ with $$int v_0(y):{rm d}y=1.tag1$$
Why are we able to conclude $$int v(t,y):{rm d}y=1tag2$$ for all $tge0$?
integration pde
$endgroup$
Suppose $v:[0,infty)timesmathbb Rtomathbb R$ is a solution of $$frac{partial v}{partial t}=fracpartial{partial y}left(frac{partial v}{partial y}+h'vright);,;;;v(0,y)=v_0(y)$$ for some $hin C^1(mathbb R)$ and $v_0in C^0(mathbb R)$ with $$int v_0(y):{rm d}y=1.tag1$$
Why are we able to conclude $$int v(t,y):{rm d}y=1tag2$$ for all $tge0$?
integration pde
integration pde
asked Jan 26 at 18:24
0xbadf00d0xbadf00d
1,87341533
1,87341533
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Compute using the fundamental theorem of calculus:
$$
frac{d}{dt} int v(t,y) dy = int partial_t v(t,y) dy = int partial_y( partial_y v(t,y) + h'(y) v(t,y))dy = lim_{z to infty} left[partial_y v(t,z) + h'(z) v(t,z) - partial_y v(t,-z) + h'(-z) v(t,-z) right] =0,
$$
assuming that $partial_y v$ and $v$ decay sufficiently rapidly at infinity. This can be justified, for instance, if the solution lives in an appropriate Sobolev space. Then since the time derivative vanishes, we have
$$
int v(t,y) dy = int v(0,y) dy = int v_0(y) dy = 1
$$
for all $t ge 0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088568%2fif-frac%25e2%2588%2582v%25e2%2588%2582t-frac-partial%25e2%2588%2582y-left-frac%25e2%2588%2582v%25e2%2588%2582yhv-right-with-v0-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Compute using the fundamental theorem of calculus:
$$
frac{d}{dt} int v(t,y) dy = int partial_t v(t,y) dy = int partial_y( partial_y v(t,y) + h'(y) v(t,y))dy = lim_{z to infty} left[partial_y v(t,z) + h'(z) v(t,z) - partial_y v(t,-z) + h'(-z) v(t,-z) right] =0,
$$
assuming that $partial_y v$ and $v$ decay sufficiently rapidly at infinity. This can be justified, for instance, if the solution lives in an appropriate Sobolev space. Then since the time derivative vanishes, we have
$$
int v(t,y) dy = int v(0,y) dy = int v_0(y) dy = 1
$$
for all $t ge 0$.
$endgroup$
add a comment |
$begingroup$
Compute using the fundamental theorem of calculus:
$$
frac{d}{dt} int v(t,y) dy = int partial_t v(t,y) dy = int partial_y( partial_y v(t,y) + h'(y) v(t,y))dy = lim_{z to infty} left[partial_y v(t,z) + h'(z) v(t,z) - partial_y v(t,-z) + h'(-z) v(t,-z) right] =0,
$$
assuming that $partial_y v$ and $v$ decay sufficiently rapidly at infinity. This can be justified, for instance, if the solution lives in an appropriate Sobolev space. Then since the time derivative vanishes, we have
$$
int v(t,y) dy = int v(0,y) dy = int v_0(y) dy = 1
$$
for all $t ge 0$.
$endgroup$
add a comment |
$begingroup$
Compute using the fundamental theorem of calculus:
$$
frac{d}{dt} int v(t,y) dy = int partial_t v(t,y) dy = int partial_y( partial_y v(t,y) + h'(y) v(t,y))dy = lim_{z to infty} left[partial_y v(t,z) + h'(z) v(t,z) - partial_y v(t,-z) + h'(-z) v(t,-z) right] =0,
$$
assuming that $partial_y v$ and $v$ decay sufficiently rapidly at infinity. This can be justified, for instance, if the solution lives in an appropriate Sobolev space. Then since the time derivative vanishes, we have
$$
int v(t,y) dy = int v(0,y) dy = int v_0(y) dy = 1
$$
for all $t ge 0$.
$endgroup$
Compute using the fundamental theorem of calculus:
$$
frac{d}{dt} int v(t,y) dy = int partial_t v(t,y) dy = int partial_y( partial_y v(t,y) + h'(y) v(t,y))dy = lim_{z to infty} left[partial_y v(t,z) + h'(z) v(t,z) - partial_y v(t,-z) + h'(-z) v(t,-z) right] =0,
$$
assuming that $partial_y v$ and $v$ decay sufficiently rapidly at infinity. This can be justified, for instance, if the solution lives in an appropriate Sobolev space. Then since the time derivative vanishes, we have
$$
int v(t,y) dy = int v(0,y) dy = int v_0(y) dy = 1
$$
for all $t ge 0$.
answered Jan 26 at 21:46
GlitchGlitch
5,6681030
5,6681030
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088568%2fif-frac%25e2%2588%2582v%25e2%2588%2582t-frac-partial%25e2%2588%2582y-left-frac%25e2%2588%2582v%25e2%2588%2582yhv-right-with-v0-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown