Is there a preference if one of the functions in convolution of Mellin transform is divergent?
$begingroup$
The convolution of Mellin transform is
$$
sigma left( x right) = int _x^1 f left( epsilon right) h left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ,
$$
if both $f left( epsilon right)$ and $h left( epsilon right)$ vanish out of range $epsilon in left( 0, 1 right)$.
My question here is, if function $h left( zeta right)$ is divergent at $zeta = 1$, would there be a difference if we instead write
$$
sigma left( x right) = int _x^1 h left( epsilon right) f left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ?
$$
Though the convolution is symmetric for functions $f left( epsilon right)$ and $h left( epsilon right)$, but is this still true if one of the functions has a divergence within the interval?
Thanks in advance!
integration convolution mellin-transform
$endgroup$
add a comment |
$begingroup$
The convolution of Mellin transform is
$$
sigma left( x right) = int _x^1 f left( epsilon right) h left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ,
$$
if both $f left( epsilon right)$ and $h left( epsilon right)$ vanish out of range $epsilon in left( 0, 1 right)$.
My question here is, if function $h left( zeta right)$ is divergent at $zeta = 1$, would there be a difference if we instead write
$$
sigma left( x right) = int _x^1 h left( epsilon right) f left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ?
$$
Though the convolution is symmetric for functions $f left( epsilon right)$ and $h left( epsilon right)$, but is this still true if one of the functions has a divergence within the interval?
Thanks in advance!
integration convolution mellin-transform
$endgroup$
1
$begingroup$
It doesn't make a difference for $x in (0, 1)$. We're computing the improper integrals $$f*h = lim_{y downarrow x} int_y^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y downarrow x} G(y), \ h*f = lim_{y uparrow 1} int_x^y h(t) f {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} G {left( frac x y right)}.$$ Either both limits do not exist or they are the same.
$endgroup$
– Maxim
Feb 17 at 20:57
$begingroup$
@Maxim You are absolutely correct, you did substitution of $tau equiv frac{x}{t}$ in $h * f$. If you make this an answer, I can accept it!
$endgroup$
– zyy
Feb 18 at 4:34
add a comment |
$begingroup$
The convolution of Mellin transform is
$$
sigma left( x right) = int _x^1 f left( epsilon right) h left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ,
$$
if both $f left( epsilon right)$ and $h left( epsilon right)$ vanish out of range $epsilon in left( 0, 1 right)$.
My question here is, if function $h left( zeta right)$ is divergent at $zeta = 1$, would there be a difference if we instead write
$$
sigma left( x right) = int _x^1 h left( epsilon right) f left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ?
$$
Though the convolution is symmetric for functions $f left( epsilon right)$ and $h left( epsilon right)$, but is this still true if one of the functions has a divergence within the interval?
Thanks in advance!
integration convolution mellin-transform
$endgroup$
The convolution of Mellin transform is
$$
sigma left( x right) = int _x^1 f left( epsilon right) h left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ,
$$
if both $f left( epsilon right)$ and $h left( epsilon right)$ vanish out of range $epsilon in left( 0, 1 right)$.
My question here is, if function $h left( zeta right)$ is divergent at $zeta = 1$, would there be a difference if we instead write
$$
sigma left( x right) = int _x^1 h left( epsilon right) f left( frac{x}{epsilon} right) frac{1}{epsilon} mathrm{d} epsilon ?
$$
Though the convolution is symmetric for functions $f left( epsilon right)$ and $h left( epsilon right)$, but is this still true if one of the functions has a divergence within the interval?
Thanks in advance!
integration convolution mellin-transform
integration convolution mellin-transform
edited yesterday


Robert Howard
2,2012932
2,2012932
asked Jan 23 at 0:14


zyyzyy
1136
1136
1
$begingroup$
It doesn't make a difference for $x in (0, 1)$. We're computing the improper integrals $$f*h = lim_{y downarrow x} int_y^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y downarrow x} G(y), \ h*f = lim_{y uparrow 1} int_x^y h(t) f {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} G {left( frac x y right)}.$$ Either both limits do not exist or they are the same.
$endgroup$
– Maxim
Feb 17 at 20:57
$begingroup$
@Maxim You are absolutely correct, you did substitution of $tau equiv frac{x}{t}$ in $h * f$. If you make this an answer, I can accept it!
$endgroup$
– zyy
Feb 18 at 4:34
add a comment |
1
$begingroup$
It doesn't make a difference for $x in (0, 1)$. We're computing the improper integrals $$f*h = lim_{y downarrow x} int_y^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y downarrow x} G(y), \ h*f = lim_{y uparrow 1} int_x^y h(t) f {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} G {left( frac x y right)}.$$ Either both limits do not exist or they are the same.
$endgroup$
– Maxim
Feb 17 at 20:57
$begingroup$
@Maxim You are absolutely correct, you did substitution of $tau equiv frac{x}{t}$ in $h * f$. If you make this an answer, I can accept it!
$endgroup$
– zyy
Feb 18 at 4:34
1
1
$begingroup$
It doesn't make a difference for $x in (0, 1)$. We're computing the improper integrals $$f*h = lim_{y downarrow x} int_y^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y downarrow x} G(y), \ h*f = lim_{y uparrow 1} int_x^y h(t) f {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} G {left( frac x y right)}.$$ Either both limits do not exist or they are the same.
$endgroup$
– Maxim
Feb 17 at 20:57
$begingroup$
It doesn't make a difference for $x in (0, 1)$. We're computing the improper integrals $$f*h = lim_{y downarrow x} int_y^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y downarrow x} G(y), \ h*f = lim_{y uparrow 1} int_x^y h(t) f {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} G {left( frac x y right)}.$$ Either both limits do not exist or they are the same.
$endgroup$
– Maxim
Feb 17 at 20:57
$begingroup$
@Maxim You are absolutely correct, you did substitution of $tau equiv frac{x}{t}$ in $h * f$. If you make this an answer, I can accept it!
$endgroup$
– zyy
Feb 18 at 4:34
$begingroup$
@Maxim You are absolutely correct, you did substitution of $tau equiv frac{x}{t}$ in $h * f$. If you make this an answer, I can accept it!
$endgroup$
– zyy
Feb 18 at 4:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Fix an $x in (0, 1)$. If $h$ has a singularity at $1$ and we define the convolution as an improper integral, we obtain
$$f*h = lim_{y downarrow x}
int_y^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y downarrow x} G(y), \
h*f = lim_{y uparrow 1}
int_x^y h(t) f {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1}
int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1} G {left( frac x y right)}.$$
When $y$ tends to $1$ from below, $x/y$ tends to $x$ from above and $x/y neq x$ (since $x neq 0$). Under these conditions, the limit composition rule holds: either
$$lim_{y uparrow 1} G {left( frac x y right)} =
lim_{y downarrow x} G(y)$$
or both limits do not exist.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083914%2fis-there-a-preference-if-one-of-the-functions-in-convolution-of-mellin-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix an $x in (0, 1)$. If $h$ has a singularity at $1$ and we define the convolution as an improper integral, we obtain
$$f*h = lim_{y downarrow x}
int_y^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y downarrow x} G(y), \
h*f = lim_{y uparrow 1}
int_x^y h(t) f {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1}
int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1} G {left( frac x y right)}.$$
When $y$ tends to $1$ from below, $x/y$ tends to $x$ from above and $x/y neq x$ (since $x neq 0$). Under these conditions, the limit composition rule holds: either
$$lim_{y uparrow 1} G {left( frac x y right)} =
lim_{y downarrow x} G(y)$$
or both limits do not exist.
$endgroup$
add a comment |
$begingroup$
Fix an $x in (0, 1)$. If $h$ has a singularity at $1$ and we define the convolution as an improper integral, we obtain
$$f*h = lim_{y downarrow x}
int_y^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y downarrow x} G(y), \
h*f = lim_{y uparrow 1}
int_x^y h(t) f {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1}
int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1} G {left( frac x y right)}.$$
When $y$ tends to $1$ from below, $x/y$ tends to $x$ from above and $x/y neq x$ (since $x neq 0$). Under these conditions, the limit composition rule holds: either
$$lim_{y uparrow 1} G {left( frac x y right)} =
lim_{y downarrow x} G(y)$$
or both limits do not exist.
$endgroup$
add a comment |
$begingroup$
Fix an $x in (0, 1)$. If $h$ has a singularity at $1$ and we define the convolution as an improper integral, we obtain
$$f*h = lim_{y downarrow x}
int_y^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y downarrow x} G(y), \
h*f = lim_{y uparrow 1}
int_x^y h(t) f {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1}
int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1} G {left( frac x y right)}.$$
When $y$ tends to $1$ from below, $x/y$ tends to $x$ from above and $x/y neq x$ (since $x neq 0$). Under these conditions, the limit composition rule holds: either
$$lim_{y uparrow 1} G {left( frac x y right)} =
lim_{y downarrow x} G(y)$$
or both limits do not exist.
$endgroup$
Fix an $x in (0, 1)$. If $h$ has a singularity at $1$ and we define the convolution as an improper integral, we obtain
$$f*h = lim_{y downarrow x}
int_y^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y downarrow x} G(y), \
h*f = lim_{y uparrow 1}
int_x^y h(t) f {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1}
int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t =
lim_{y uparrow 1} G {left( frac x y right)}.$$
When $y$ tends to $1$ from below, $x/y$ tends to $x$ from above and $x/y neq x$ (since $x neq 0$). Under these conditions, the limit composition rule holds: either
$$lim_{y uparrow 1} G {left( frac x y right)} =
lim_{y downarrow x} G(y)$$
or both limits do not exist.
answered Feb 18 at 15:28
MaximMaxim
5,7631220
5,7631220
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083914%2fis-there-a-preference-if-one-of-the-functions-in-convolution-of-mellin-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It doesn't make a difference for $x in (0, 1)$. We're computing the improper integrals $$f*h = lim_{y downarrow x} int_y^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y downarrow x} G(y), \ h*f = lim_{y uparrow 1} int_x^y h(t) f {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} int_{x/y}^1 f(t) h {left( frac x t right)} frac {dt} t = lim_{y uparrow 1} G {left( frac x y right)}.$$ Either both limits do not exist or they are the same.
$endgroup$
– Maxim
Feb 17 at 20:57
$begingroup$
@Maxim You are absolutely correct, you did substitution of $tau equiv frac{x}{t}$ in $h * f$. If you make this an answer, I can accept it!
$endgroup$
– zyy
Feb 18 at 4:34