$mathbb{E}[(Y_{n+1} - {Y_n})Z] =0.$ implies $Y_n = mathbb{E}[Y_{n+1}|H_n]$?
$begingroup$
Suppose $Y_n = mathbb{E}[Y|X_1 dots X_n]$ is a Doob's Martingale sequence . let $H_n$ be $sigma$-algebra generate by $X_1 dots X_n$,then if for any random variable $Z in H_n$ we have :$mathbb{E}[(Y_{n+1} - {Y_n})Z] =0.$
then we have $Y_n = mathbb{E}[Y_{n+1}|H_n]$
how to see that ?
conditional-expectation martingales
$endgroup$
add a comment |
$begingroup$
Suppose $Y_n = mathbb{E}[Y|X_1 dots X_n]$ is a Doob's Martingale sequence . let $H_n$ be $sigma$-algebra generate by $X_1 dots X_n$,then if for any random variable $Z in H_n$ we have :$mathbb{E}[(Y_{n+1} - {Y_n})Z] =0.$
then we have $Y_n = mathbb{E}[Y_{n+1}|H_n]$
how to see that ?
conditional-expectation martingales
$endgroup$
add a comment |
$begingroup$
Suppose $Y_n = mathbb{E}[Y|X_1 dots X_n]$ is a Doob's Martingale sequence . let $H_n$ be $sigma$-algebra generate by $X_1 dots X_n$,then if for any random variable $Z in H_n$ we have :$mathbb{E}[(Y_{n+1} - {Y_n})Z] =0.$
then we have $Y_n = mathbb{E}[Y_{n+1}|H_n]$
how to see that ?
conditional-expectation martingales
$endgroup$
Suppose $Y_n = mathbb{E}[Y|X_1 dots X_n]$ is a Doob's Martingale sequence . let $H_n$ be $sigma$-algebra generate by $X_1 dots X_n$,then if for any random variable $Z in H_n$ we have :$mathbb{E}[(Y_{n+1} - {Y_n})Z] =0.$
then we have $Y_n = mathbb{E}[Y_{n+1}|H_n]$
how to see that ?
conditional-expectation martingales
conditional-expectation martingales
asked Jan 21 at 3:02


ShaoyuPeiShaoyuPei
1778
1778
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By the hypothesis,
$$0 = E[(Y_{n+1} - Y_n) Z] = E[E[Y_{n+1} mid H_n]Z] - E[Y_n Z].$$
Now recall the measure-theoretic definition of the conditional expectation $E[Y_{n+1} mid H_n]$.
$endgroup$
add a comment |
$begingroup$
If $Z = mathbf{1}_mathrm{X}$ for $mathrm{X} in sigma(X_1, ldots, X_n)$ then $mathbf{E}((Y_{n+1}-Y_n)Z) = 0$ signifies $intlimits_mathrm{X} Y_{n+1} dmathbf{P} = intlimits_mathrm{X} Y_n dmathbf{P},$ and since $Y_n$ is $mathscr{H}_n$-measurable, the result follows upon remembering what the conditional expectation means.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081439%2fmathbbey-n1-y-nz-0-implies-y-n-mathbbey-n1h-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By the hypothesis,
$$0 = E[(Y_{n+1} - Y_n) Z] = E[E[Y_{n+1} mid H_n]Z] - E[Y_n Z].$$
Now recall the measure-theoretic definition of the conditional expectation $E[Y_{n+1} mid H_n]$.
$endgroup$
add a comment |
$begingroup$
By the hypothesis,
$$0 = E[(Y_{n+1} - Y_n) Z] = E[E[Y_{n+1} mid H_n]Z] - E[Y_n Z].$$
Now recall the measure-theoretic definition of the conditional expectation $E[Y_{n+1} mid H_n]$.
$endgroup$
add a comment |
$begingroup$
By the hypothesis,
$$0 = E[(Y_{n+1} - Y_n) Z] = E[E[Y_{n+1} mid H_n]Z] - E[Y_n Z].$$
Now recall the measure-theoretic definition of the conditional expectation $E[Y_{n+1} mid H_n]$.
$endgroup$
By the hypothesis,
$$0 = E[(Y_{n+1} - Y_n) Z] = E[E[Y_{n+1} mid H_n]Z] - E[Y_n Z].$$
Now recall the measure-theoretic definition of the conditional expectation $E[Y_{n+1} mid H_n]$.
answered Jan 21 at 3:23
angryavianangryavian
42k23381
42k23381
add a comment |
add a comment |
$begingroup$
If $Z = mathbf{1}_mathrm{X}$ for $mathrm{X} in sigma(X_1, ldots, X_n)$ then $mathbf{E}((Y_{n+1}-Y_n)Z) = 0$ signifies $intlimits_mathrm{X} Y_{n+1} dmathbf{P} = intlimits_mathrm{X} Y_n dmathbf{P},$ and since $Y_n$ is $mathscr{H}_n$-measurable, the result follows upon remembering what the conditional expectation means.
$endgroup$
add a comment |
$begingroup$
If $Z = mathbf{1}_mathrm{X}$ for $mathrm{X} in sigma(X_1, ldots, X_n)$ then $mathbf{E}((Y_{n+1}-Y_n)Z) = 0$ signifies $intlimits_mathrm{X} Y_{n+1} dmathbf{P} = intlimits_mathrm{X} Y_n dmathbf{P},$ and since $Y_n$ is $mathscr{H}_n$-measurable, the result follows upon remembering what the conditional expectation means.
$endgroup$
add a comment |
$begingroup$
If $Z = mathbf{1}_mathrm{X}$ for $mathrm{X} in sigma(X_1, ldots, X_n)$ then $mathbf{E}((Y_{n+1}-Y_n)Z) = 0$ signifies $intlimits_mathrm{X} Y_{n+1} dmathbf{P} = intlimits_mathrm{X} Y_n dmathbf{P},$ and since $Y_n$ is $mathscr{H}_n$-measurable, the result follows upon remembering what the conditional expectation means.
$endgroup$
If $Z = mathbf{1}_mathrm{X}$ for $mathrm{X} in sigma(X_1, ldots, X_n)$ then $mathbf{E}((Y_{n+1}-Y_n)Z) = 0$ signifies $intlimits_mathrm{X} Y_{n+1} dmathbf{P} = intlimits_mathrm{X} Y_n dmathbf{P},$ and since $Y_n$ is $mathscr{H}_n$-measurable, the result follows upon remembering what the conditional expectation means.
answered Jan 21 at 3:25


Will M.Will M.
2,835315
2,835315
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081439%2fmathbbey-n1-y-nz-0-implies-y-n-mathbbey-n1h-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown