Mellin transform of $sin x$ aka $int^{infty}_0 x^{s-1}sin x dx $
$begingroup$
I am trying to find the Mellin transform of $sin x $, put in other words to solve:
$$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$
And I know that the answer is:
$$Gamma(s) sin left(frac{pi s}{2}right)$$
From several tables on the internet but I couldn't find any justification.
How can this identity be proven?
calculus integration complex-analysis contour-integration mellin-transform
$endgroup$
add a comment |
$begingroup$
I am trying to find the Mellin transform of $sin x $, put in other words to solve:
$$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$
And I know that the answer is:
$$Gamma(s) sin left(frac{pi s}{2}right)$$
From several tables on the internet but I couldn't find any justification.
How can this identity be proven?
calculus integration complex-analysis contour-integration mellin-transform
$endgroup$
add a comment |
$begingroup$
I am trying to find the Mellin transform of $sin x $, put in other words to solve:
$$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$
And I know that the answer is:
$$Gamma(s) sin left(frac{pi s}{2}right)$$
From several tables on the internet but I couldn't find any justification.
How can this identity be proven?
calculus integration complex-analysis contour-integration mellin-transform
$endgroup$
I am trying to find the Mellin transform of $sin x $, put in other words to solve:
$$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$
And I know that the answer is:
$$Gamma(s) sin left(frac{pi s}{2}right)$$
From several tables on the internet but I couldn't find any justification.
How can this identity be proven?
calculus integration complex-analysis contour-integration mellin-transform
calculus integration complex-analysis contour-integration mellin-transform
edited Jan 26 at 20:35


Zacky
7,89511061
7,89511061
asked May 5 '13 at 18:38
Max CliffordMax Clifford
524
524
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.
Let's look at the Mellin transform of $e^{ix}$:
$$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$
For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
$$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$
(Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)
Summing up, we get that Mellin transform of $e^{ix}$ is
$$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$
Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$
Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
$$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$
$endgroup$
$begingroup$
Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
$endgroup$
– Max Clifford
May 6 '13 at 19:26
$begingroup$
@MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
$endgroup$
– mrf
May 6 '13 at 19:42
add a comment |
$begingroup$
Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
$$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
Noting that
$$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
and
$$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
then
begin{align}
mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
&= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
&= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
end{align}
Setting $u = t^2$, one has
begin{align}
mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
&= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
&= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
&= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
&= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
&=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
&= Gamma (s) sin left (frac{pi s}{2} right )
end{align}
This is valid for $-1 < s < 1$.
Explanation
(1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.
(2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.
(3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.
(4) Again using the reflexion formula for the gamma function.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f382412%2fmellin-transform-of-sin-x-aka-int-infty-0-xs-1-sin-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.
Let's look at the Mellin transform of $e^{ix}$:
$$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$
For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
$$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$
(Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)
Summing up, we get that Mellin transform of $e^{ix}$ is
$$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$
Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$
Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
$$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$
$endgroup$
$begingroup$
Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
$endgroup$
– Max Clifford
May 6 '13 at 19:26
$begingroup$
@MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
$endgroup$
– mrf
May 6 '13 at 19:42
add a comment |
$begingroup$
The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.
Let's look at the Mellin transform of $e^{ix}$:
$$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$
For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
$$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$
(Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)
Summing up, we get that Mellin transform of $e^{ix}$ is
$$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$
Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$
Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
$$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$
$endgroup$
$begingroup$
Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
$endgroup$
– Max Clifford
May 6 '13 at 19:26
$begingroup$
@MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
$endgroup$
– mrf
May 6 '13 at 19:42
add a comment |
$begingroup$
The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.
Let's look at the Mellin transform of $e^{ix}$:
$$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$
For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
$$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$
(Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)
Summing up, we get that Mellin transform of $e^{ix}$ is
$$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$
Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$
Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
$$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$
$endgroup$
The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.
Let's look at the Mellin transform of $e^{ix}$:
$$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$
For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
$$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$
(Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)
Summing up, we get that Mellin transform of $e^{ix}$ is
$$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$
Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$
Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
$$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$
edited May 6 '13 at 9:38
answered May 6 '13 at 9:25


mrfmrf
37.6k64786
37.6k64786
$begingroup$
Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
$endgroup$
– Max Clifford
May 6 '13 at 19:26
$begingroup$
@MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
$endgroup$
– mrf
May 6 '13 at 19:42
add a comment |
$begingroup$
Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
$endgroup$
– Max Clifford
May 6 '13 at 19:26
$begingroup$
@MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
$endgroup$
– mrf
May 6 '13 at 19:42
$begingroup$
Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
$endgroup$
– Max Clifford
May 6 '13 at 19:26
$begingroup$
Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
$endgroup$
– Max Clifford
May 6 '13 at 19:26
$begingroup$
@MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
$endgroup$
– mrf
May 6 '13 at 19:42
$begingroup$
@MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
$endgroup$
– mrf
May 6 '13 at 19:42
add a comment |
$begingroup$
Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
$$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
Noting that
$$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
and
$$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
then
begin{align}
mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
&= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
&= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
end{align}
Setting $u = t^2$, one has
begin{align}
mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
&= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
&= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
&= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
&= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
&=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
&= Gamma (s) sin left (frac{pi s}{2} right )
end{align}
This is valid for $-1 < s < 1$.
Explanation
(1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.
(2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.
(3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.
(4) Again using the reflexion formula for the gamma function.
$endgroup$
add a comment |
$begingroup$
Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
$$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
Noting that
$$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
and
$$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
then
begin{align}
mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
&= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
&= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
end{align}
Setting $u = t^2$, one has
begin{align}
mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
&= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
&= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
&= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
&= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
&=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
&= Gamma (s) sin left (frac{pi s}{2} right )
end{align}
This is valid for $-1 < s < 1$.
Explanation
(1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.
(2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.
(3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.
(4) Again using the reflexion formula for the gamma function.
$endgroup$
add a comment |
$begingroup$
Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
$$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
Noting that
$$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
and
$$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
then
begin{align}
mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
&= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
&= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
end{align}
Setting $u = t^2$, one has
begin{align}
mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
&= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
&= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
&= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
&= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
&=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
&= Gamma (s) sin left (frac{pi s}{2} right )
end{align}
This is valid for $-1 < s < 1$.
Explanation
(1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.
(2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.
(3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.
(4) Again using the reflexion formula for the gamma function.
$endgroup$
Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
$$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
Noting that
$$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
and
$$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
then
begin{align}
mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
&= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
&= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
end{align}
Setting $u = t^2$, one has
begin{align}
mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
&= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
&= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
&= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
&= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
&= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
&=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
&= Gamma (s) sin left (frac{pi s}{2} right )
end{align}
This is valid for $-1 < s < 1$.
Explanation
(1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.
(2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.
(3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.
(4) Again using the reflexion formula for the gamma function.
edited Feb 6 at 1:32
answered Feb 6 at 1:19


omegadotomegadot
6,4492829
6,4492829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f382412%2fmellin-transform-of-sin-x-aka-int-infty-0-xs-1-sin-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown