Mellin transform of $sin x$ aka $int^{infty}_0 x^{s-1}sin x dx $












8












$begingroup$


I am trying to find the Mellin transform of $sin x $, put in other words to solve:



$$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$



And I know that the answer is:



$$Gamma(s) sin left(frac{pi s}{2}right)$$



From several tables on the internet but I couldn't find any justification.



How can this identity be proven?










share|cite|improve this question











$endgroup$

















    8












    $begingroup$


    I am trying to find the Mellin transform of $sin x $, put in other words to solve:



    $$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$



    And I know that the answer is:



    $$Gamma(s) sin left(frac{pi s}{2}right)$$



    From several tables on the internet but I couldn't find any justification.



    How can this identity be proven?










    share|cite|improve this question











    $endgroup$















      8












      8








      8


      2



      $begingroup$


      I am trying to find the Mellin transform of $sin x $, put in other words to solve:



      $$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$



      And I know that the answer is:



      $$Gamma(s) sin left(frac{pi s}{2}right)$$



      From several tables on the internet but I couldn't find any justification.



      How can this identity be proven?










      share|cite|improve this question











      $endgroup$




      I am trying to find the Mellin transform of $sin x $, put in other words to solve:



      $$int^{infty}_0 x^{s-1}sin x mathrm{d} x $$



      And I know that the answer is:



      $$Gamma(s) sin left(frac{pi s}{2}right)$$



      From several tables on the internet but I couldn't find any justification.



      How can this identity be proven?







      calculus integration complex-analysis contour-integration mellin-transform






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 26 at 20:35









      Zacky

      7,89511061




      7,89511061










      asked May 5 '13 at 18:38









      Max CliffordMax Clifford

      524




      524






















          2 Answers
          2






          active

          oldest

          votes


















          10












          $begingroup$

          The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.



          Let's look at the Mellin transform of $e^{ix}$:



          $$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$



          For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
          $$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$



          (Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)



          Summing up, we get that Mellin transform of $e^{ix}$ is
          $$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$



          Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$



          Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
          $$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
            $endgroup$
            – Max Clifford
            May 6 '13 at 19:26










          • $begingroup$
            @MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
            $endgroup$
            – mrf
            May 6 '13 at 19:42





















          1












          $begingroup$

          Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
          $$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
          Noting that
          $$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
          and
          $$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
          then
          begin{align}
          mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
          &= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
          &= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
          end{align}

          Setting $u = t^2$, one has
          begin{align}
          mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
          &= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
          &= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
          &= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
          &= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
          &= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
          &= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
          &=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
          &= Gamma (s) sin left (frac{pi s}{2} right )
          end{align}

          This is valid for $-1 < s < 1$.



          Explanation



          (1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.



          (2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.



          (3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.



          (4) Again using the reflexion formula for the gamma function.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f382412%2fmellin-transform-of-sin-x-aka-int-infty-0-xs-1-sin-x-dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$

            The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.



            Let's look at the Mellin transform of $e^{ix}$:



            $$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$



            For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
            $$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$



            (Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)



            Summing up, we get that Mellin transform of $e^{ix}$ is
            $$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$



            Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$



            Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
            $$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
              $endgroup$
              – Max Clifford
              May 6 '13 at 19:26










            • $begingroup$
              @MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
              $endgroup$
              – mrf
              May 6 '13 at 19:42


















            10












            $begingroup$

            The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.



            Let's look at the Mellin transform of $e^{ix}$:



            $$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$



            For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
            $$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$



            (Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)



            Summing up, we get that Mellin transform of $e^{ix}$ is
            $$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$



            Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$



            Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
            $$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
              $endgroup$
              – Max Clifford
              May 6 '13 at 19:26










            • $begingroup$
              @MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
              $endgroup$
              – mrf
              May 6 '13 at 19:42
















            10












            10








            10





            $begingroup$

            The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.



            Let's look at the Mellin transform of $e^{ix}$:



            $$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$



            For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
            $$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$



            (Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)



            Summing up, we get that Mellin transform of $e^{ix}$ is
            $$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$



            Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$



            Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
            $$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$






            share|cite|improve this answer











            $endgroup$



            The basic idea is to use Euler's formula: $sin x = dfrac{e^{ix}-e^{-ix}}{2i}$.



            Let's look at the Mellin transform of $e^{ix}$:



            $$int_0^infty e^{ix} x^{s-1},dx = begin{bmatrix} x=it \ dx = i,dtend{bmatrix} = int_{0}^{-icdotinfty} e^{-t} (it)^{s-1} i,dt = -i^s int_{-icdot infty}^0 e^{-t}t^{s-1},dt.$$



            For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis:
            $$int_{-icdot infty}^0 e^{-t}t^{s-1},dt = -int_0^infty e^{-t}t^{s-1},dt = -Gamma(s).$$



            (Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)



            Summing up, we get that Mellin transform of $e^{ix}$ is
            $$i^sGamma(s) = exp(ipi s/2) Gamma(s).$$



            Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}Gamma(s) = exp(-ipi s/2) Gamma(s).$$



            Forming the appropriate linear combination, the Mellin transform of $sin x$ ends up as
            $$ frac{exp(ipi s/2) + exp(-ipi s/2)}{2i} Gamma(s) = sinfrac{pi s}2 Gamma(s).$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited May 6 '13 at 9:38

























            answered May 6 '13 at 9:25









            mrfmrf

            37.6k64786




            37.6k64786












            • $begingroup$
              Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
              $endgroup$
              – Max Clifford
              May 6 '13 at 19:26










            • $begingroup$
              @MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
              $endgroup$
              – mrf
              May 6 '13 at 19:42




















            • $begingroup$
              Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
              $endgroup$
              – Max Clifford
              May 6 '13 at 19:26










            • $begingroup$
              @MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
              $endgroup$
              – mrf
              May 6 '13 at 19:42


















            $begingroup$
            Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
            $endgroup$
            – Max Clifford
            May 6 '13 at 19:26




            $begingroup$
            Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks
            $endgroup$
            – Max Clifford
            May 6 '13 at 19:26












            $begingroup$
            @MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
            $endgroup$
            – mrf
            May 6 '13 at 19:42






            $begingroup$
            @MaxClifford You want to integrate along the ray from $-iinfty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $Rtoinfty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.)
            $endgroup$
            – mrf
            May 6 '13 at 19:42













            1












            $begingroup$

            Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
            $$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
            Noting that
            $$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
            and
            $$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
            then
            begin{align}
            mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
            &= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
            &= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
            end{align}

            Setting $u = t^2$, one has
            begin{align}
            mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
            &= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
            &= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
            &= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
            &= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
            &= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
            &= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
            &=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
            &= Gamma (s) sin left (frac{pi s}{2} right )
            end{align}

            This is valid for $-1 < s < 1$.



            Explanation



            (1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.



            (2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.



            (3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.



            (4) Again using the reflexion formula for the gamma function.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
              $$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
              Noting that
              $$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
              and
              $$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
              then
              begin{align}
              mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
              &= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
              &= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
              end{align}

              Setting $u = t^2$, one has
              begin{align}
              mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
              &= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
              &= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
              &= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
              &= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
              &= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
              &= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
              &=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
              &= Gamma (s) sin left (frac{pi s}{2} right )
              end{align}

              This is valid for $-1 < s < 1$.



              Explanation



              (1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.



              (2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.



              (3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.



              (4) Again using the reflexion formula for the gamma function.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
                $$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
                Noting that
                $$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
                and
                $$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
                then
                begin{align}
                mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
                &= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
                &= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
                end{align}

                Setting $u = t^2$, one has
                begin{align}
                mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
                &= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
                &= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
                &= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
                &= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
                &= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
                &= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
                &=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
                &= Gamma (s) sin left (frac{pi s}{2} right )
                end{align}

                This is valid for $-1 < s < 1$.



                Explanation



                (1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.



                (2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.



                (3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.



                (4) Again using the reflexion formula for the gamma function.






                share|cite|improve this answer











                $endgroup$



                Alternatively, the Mellin transform for $sin x$ can be found by employing the following useful property for the Laplace transform:
                $$int_0^infty f(x) g(x) , dx = int_0^infty mathcal{L} {f(x)} (t) cdot mathcal{L}^{-1} {g(x)} (t) , dt.$$
                Noting that
                $$mathcal{L} {sin x}(t) = frac{1}{1 + t^2},$$
                and
                $$mathcal{L}^{-1} left {frac{1}{x^{1-s}} right } (t)= frac{1}{Gamma (1 - s)} mathcal{L}^{-1} left {frac{Gamma (1 - s)}{x^{1-s}} right } (t) = frac{t^{-s}}{Gamma (1 - s)},$$
                then
                begin{align}
                mathcal{M} {sin x} &= int_0^infty sin x cdot frac{1}{x^{1 - s}} , dx\
                &= int_0^infty mathcal{L} {sin x} (t) cdot mathcal{L}^{-1} left {frac{1}{x^{1 - s}} right } (t) , dt\
                &= frac{1}{Gamma (1 - s)} int_0^infty frac{t^{-s}}{1 + t^2} , dt.
                end{align}

                Setting $u = t^2$, one has
                begin{align}
                mathcal{M} {sin x} &= frac{1}{2 Gamma (1 - s)} int_0^infty frac{u^{-frac{s}{2} - frac{1}{2}}}{1 + u} , du\
                &= frac{1}{2 Gamma (1 - s)} operatorname{B} left (frac{1}{2} - frac{s}{2}, frac{1}{2} + frac{s}{2} right ) tag1\
                &= frac{1}{2 Gamma (1 - s)} Gamma left (frac{1}{2} - frac{s}{2} right ) Gamma left (frac{1}{2} + frac{s}{2} right ) tag2\
                &= frac{1}{2 Gamma (1 - s)} Gamma left [1 - left (frac{1}{2} + frac{s}{2} right ) right ] Gamma left (frac{1}{2} + frac{s}{2} right )\
                &= frac{1}{2 Gamma (1 - s)} frac{pi}{sin left (frac{pi}{2} + frac{pi s}{2} right )} tag3\
                &= frac{1}{2 Gamma (1 - s)} frac{pi}{cos left (frac{pi s}{2} right )}\
                &= frac{Gamma (s) sin (pi s)}{2 pi} cdot frac{pi}{cos left (frac{pi s}{2} right )} tag4\
                &=frac{Gamma (s) sin left (frac{pi s}{2} right ) cos left (frac{pi s}{2} right )}{cos left (frac{pi s}{2} right )}\
                &= Gamma (s) sin left (frac{pi s}{2} right )
                end{align}

                This is valid for $-1 < s < 1$.



                Explanation



                (1) Using $operatorname{B} (x,y) = displaystyle{int_0^infty frac{t^{x - 1}}{(1 + t)^{x + y}} , dt}$.



                (2) Using $operatorname{B}(x,y) = dfrac{Gamma (x) Gamma (y)}{Gamma (x + y)}$.



                (3) Using the reflexion formula for the gamma function: $Gamma (1 - z) Gamma (z) = dfrac{pi}{sin (pi z)}$.



                (4) Again using the reflexion formula for the gamma function.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Feb 6 at 1:32

























                answered Feb 6 at 1:19









                omegadotomegadot

                6,4492829




                6,4492829






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f382412%2fmellin-transform-of-sin-x-aka-int-infty-0-xs-1-sin-x-dx%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith