Prove that if $amid(b-1)$ and $a^2mid(b^2-2b+4)$, then $amid12$.
$begingroup$
Prove that if $amid(b-1)$ and $a^2mid(b^2-2b+4)$, then $amid12$.
I am not sure where to start for this question, any help would be greatly appreciated, thanks!
divisibility
$endgroup$
add a comment |
$begingroup$
Prove that if $amid(b-1)$ and $a^2mid(b^2-2b+4)$, then $amid12$.
I am not sure where to start for this question, any help would be greatly appreciated, thanks!
divisibility
$endgroup$
add a comment |
$begingroup$
Prove that if $amid(b-1)$ and $a^2mid(b^2-2b+4)$, then $amid12$.
I am not sure where to start for this question, any help would be greatly appreciated, thanks!
divisibility
$endgroup$
Prove that if $amid(b-1)$ and $a^2mid(b^2-2b+4)$, then $amid12$.
I am not sure where to start for this question, any help would be greatly appreciated, thanks!
divisibility
divisibility
asked Jan 21 at 4:39
macymacy
305
305
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Suppose $b-1=ak$, $kinmathbb Z$. Then $b^2-2b+4=(b-1)^2+3=a^2k^2+3$, hence $a^2$ divides both $a^2k^2$ and $a^2k^2+3$. Therefore it divides $3$, but $3mid12$!
$endgroup$
add a comment |
$begingroup$
As has been stated in other answers,
$$a mid b - 1 Rightarrow a^2 mid b^2 - 2b + 1$$
as $left(b - 1right)^2 = b^2 - 2b + 1$, so
$$a^2 mid left(b^2 - 2b + 4right) - left(b^2 - 2b + 1right) Rightarrow a^2 mid 3$$
Since $3$ is a prime, this can only be true if $a = 1$, which of course means that $a mid 12$.
$endgroup$
add a comment |
$begingroup$
Well:
$$a|(b-1)implies a^2|(b^2-2b+1)$$
So for a particular $t$ we have $a^2|t$ and $a^2|(t+3)$
Can you continue this?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081519%2fprove-that-if-a-midb-1-and-a2-midb2-2b4-then-a-mid12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose $b-1=ak$, $kinmathbb Z$. Then $b^2-2b+4=(b-1)^2+3=a^2k^2+3$, hence $a^2$ divides both $a^2k^2$ and $a^2k^2+3$. Therefore it divides $3$, but $3mid12$!
$endgroup$
add a comment |
$begingroup$
Suppose $b-1=ak$, $kinmathbb Z$. Then $b^2-2b+4=(b-1)^2+3=a^2k^2+3$, hence $a^2$ divides both $a^2k^2$ and $a^2k^2+3$. Therefore it divides $3$, but $3mid12$!
$endgroup$
add a comment |
$begingroup$
Suppose $b-1=ak$, $kinmathbb Z$. Then $b^2-2b+4=(b-1)^2+3=a^2k^2+3$, hence $a^2$ divides both $a^2k^2$ and $a^2k^2+3$. Therefore it divides $3$, but $3mid12$!
$endgroup$
Suppose $b-1=ak$, $kinmathbb Z$. Then $b^2-2b+4=(b-1)^2+3=a^2k^2+3$, hence $a^2$ divides both $a^2k^2$ and $a^2k^2+3$. Therefore it divides $3$, but $3mid12$!
answered Jan 21 at 4:52


YiFanYiFan
4,4711627
4,4711627
add a comment |
add a comment |
$begingroup$
As has been stated in other answers,
$$a mid b - 1 Rightarrow a^2 mid b^2 - 2b + 1$$
as $left(b - 1right)^2 = b^2 - 2b + 1$, so
$$a^2 mid left(b^2 - 2b + 4right) - left(b^2 - 2b + 1right) Rightarrow a^2 mid 3$$
Since $3$ is a prime, this can only be true if $a = 1$, which of course means that $a mid 12$.
$endgroup$
add a comment |
$begingroup$
As has been stated in other answers,
$$a mid b - 1 Rightarrow a^2 mid b^2 - 2b + 1$$
as $left(b - 1right)^2 = b^2 - 2b + 1$, so
$$a^2 mid left(b^2 - 2b + 4right) - left(b^2 - 2b + 1right) Rightarrow a^2 mid 3$$
Since $3$ is a prime, this can only be true if $a = 1$, which of course means that $a mid 12$.
$endgroup$
add a comment |
$begingroup$
As has been stated in other answers,
$$a mid b - 1 Rightarrow a^2 mid b^2 - 2b + 1$$
as $left(b - 1right)^2 = b^2 - 2b + 1$, so
$$a^2 mid left(b^2 - 2b + 4right) - left(b^2 - 2b + 1right) Rightarrow a^2 mid 3$$
Since $3$ is a prime, this can only be true if $a = 1$, which of course means that $a mid 12$.
$endgroup$
As has been stated in other answers,
$$a mid b - 1 Rightarrow a^2 mid b^2 - 2b + 1$$
as $left(b - 1right)^2 = b^2 - 2b + 1$, so
$$a^2 mid left(b^2 - 2b + 4right) - left(b^2 - 2b + 1right) Rightarrow a^2 mid 3$$
Since $3$ is a prime, this can only be true if $a = 1$, which of course means that $a mid 12$.
edited Jan 21 at 5:04
answered Jan 21 at 4:59
John OmielanJohn Omielan
3,5501215
3,5501215
add a comment |
add a comment |
$begingroup$
Well:
$$a|(b-1)implies a^2|(b^2-2b+1)$$
So for a particular $t$ we have $a^2|t$ and $a^2|(t+3)$
Can you continue this?
$endgroup$
add a comment |
$begingroup$
Well:
$$a|(b-1)implies a^2|(b^2-2b+1)$$
So for a particular $t$ we have $a^2|t$ and $a^2|(t+3)$
Can you continue this?
$endgroup$
add a comment |
$begingroup$
Well:
$$a|(b-1)implies a^2|(b^2-2b+1)$$
So for a particular $t$ we have $a^2|t$ and $a^2|(t+3)$
Can you continue this?
$endgroup$
Well:
$$a|(b-1)implies a^2|(b^2-2b+1)$$
So for a particular $t$ we have $a^2|t$ and $a^2|(t+3)$
Can you continue this?
answered Jan 21 at 4:53


Rhys HughesRhys Hughes
6,9571530
6,9571530
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081519%2fprove-that-if-a-midb-1-and-a2-midb2-2b4-then-a-mid12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown