Proving an inequality of random variables












3












$begingroup$


I am currently reading a paper that claims the following fact:




Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
begin{eqnarray}
&& mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
& leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
end{eqnarray}




It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    I am currently reading a paper that claims the following fact:




    Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
    begin{eqnarray}
    && mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
    & leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
    end{eqnarray}




    It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      I am currently reading a paper that claims the following fact:




      Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
      begin{eqnarray}
      && mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
      & leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
      end{eqnarray}




      It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.










      share|cite|improve this question









      $endgroup$




      I am currently reading a paper that claims the following fact:




      Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
      begin{eqnarray}
      && mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
      & leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
      end{eqnarray}




      It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.







      probability probability-theory lp-spaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 22 at 23:40









      RichardRichard

      1,2211724




      1,2211724






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          We can estimate each term separately. Observe the following:
          $$
          Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
          $$

          $$
          Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
          $$



          $$
          Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
          $$
          and
          $$begin{eqnarray}
          Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
          &le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
          end{eqnarray}$$
          by Cauchy-Schwarz. This gives
          $$
          begin{eqnarray}
          mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
          end{eqnarray}
          $$
          as desired.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083881%2fproving-an-inequality-of-random-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            We can estimate each term separately. Observe the following:
            $$
            Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
            $$

            $$
            Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
            $$



            $$
            Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
            $$
            and
            $$begin{eqnarray}
            Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
            &le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
            end{eqnarray}$$
            by Cauchy-Schwarz. This gives
            $$
            begin{eqnarray}
            mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
            end{eqnarray}
            $$
            as desired.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              We can estimate each term separately. Observe the following:
              $$
              Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
              $$

              $$
              Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
              $$



              $$
              Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
              $$
              and
              $$begin{eqnarray}
              Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
              &le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
              end{eqnarray}$$
              by Cauchy-Schwarz. This gives
              $$
              begin{eqnarray}
              mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
              end{eqnarray}
              $$
              as desired.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                We can estimate each term separately. Observe the following:
                $$
                Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
                $$

                $$
                Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
                $$



                $$
                Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
                $$
                and
                $$begin{eqnarray}
                Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
                &le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
                end{eqnarray}$$
                by Cauchy-Schwarz. This gives
                $$
                begin{eqnarray}
                mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
                end{eqnarray}
                $$
                as desired.






                share|cite|improve this answer









                $endgroup$



                We can estimate each term separately. Observe the following:
                $$
                Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
                $$

                $$
                Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
                $$



                $$
                Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
                $$
                and
                $$begin{eqnarray}
                Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
                &le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
                end{eqnarray}$$
                by Cauchy-Schwarz. This gives
                $$
                begin{eqnarray}
                mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
                end{eqnarray}
                $$
                as desired.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 23 at 0:21









                SongSong

                17.2k21145




                17.2k21145






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083881%2fproving-an-inequality-of-random-variables%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    Npm cannot find a required file even through it is in the searched directory

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith