Proving an inequality of random variables
$begingroup$
I am currently reading a paper that claims the following fact:
Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
begin{eqnarray}
&& mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
& leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
end{eqnarray}
It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.
probability probability-theory lp-spaces
$endgroup$
add a comment |
$begingroup$
I am currently reading a paper that claims the following fact:
Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
begin{eqnarray}
&& mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
& leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
end{eqnarray}
It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.
probability probability-theory lp-spaces
$endgroup$
add a comment |
$begingroup$
I am currently reading a paper that claims the following fact:
Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
begin{eqnarray}
&& mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
& leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
end{eqnarray}
It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.
probability probability-theory lp-spaces
$endgroup$
I am currently reading a paper that claims the following fact:
Let $X$, $Y$ be $L^2$ random variables on some probability space. The $L^2$ norm is denoted by $| cdot |_{2}$. Then there exists $C>0$ such that
begin{eqnarray}
&& mathbb{E} bigg[ mathbf{1}_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| bigg] \
& leq & C |Y|_2 bigg( |Y|_2 + sqrt{|Y|_2} + sup_{A: mathbb{P}(A) leq |Y|_2} mathbb{E}[|X|^2 mathbf{1}_A]^{1/2} bigg).
end{eqnarray}
It seems to involve the Cauchy-Schwarz inequality, applying to the terms $ mathbf{1}_{{|Y| geq |Y|^{1/2}_2}}(1+|X|+|Y|)$ and $|Y|$. But I don't see how the $L^2$ norm of the first term can be bounded.
probability probability-theory lp-spaces
probability probability-theory lp-spaces
asked Jan 22 at 23:40
RichardRichard
1,2211724
1,2211724
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We can estimate each term separately. Observe the following:
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
$$
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
$$
$$
Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
$$ and
$$begin{eqnarray}
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
&le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
end{eqnarray}$$ by Cauchy-Schwarz. This gives
$$
begin{eqnarray}
mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
end{eqnarray}
$$ as desired.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083881%2fproving-an-inequality-of-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can estimate each term separately. Observe the following:
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
$$
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
$$
$$
Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
$$ and
$$begin{eqnarray}
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
&le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
end{eqnarray}$$ by Cauchy-Schwarz. This gives
$$
begin{eqnarray}
mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
end{eqnarray}
$$ as desired.
$endgroup$
add a comment |
$begingroup$
We can estimate each term separately. Observe the following:
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
$$
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
$$
$$
Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
$$ and
$$begin{eqnarray}
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
&le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
end{eqnarray}$$ by Cauchy-Schwarz. This gives
$$
begin{eqnarray}
mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
end{eqnarray}
$$ as desired.
$endgroup$
add a comment |
$begingroup$
We can estimate each term separately. Observe the following:
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
$$
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
$$
$$
Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
$$ and
$$begin{eqnarray}
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
&le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
end{eqnarray}$$ by Cauchy-Schwarz. This gives
$$
begin{eqnarray}
mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
end{eqnarray}
$$ as desired.
$endgroup$
We can estimate each term separately. Observe the following:
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|right]le Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}frac{|Y|^2}{|Y|_2^{1/2}}right]le|Y|_2^{3/2},
$$
$$
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]le |Y|_2^2,
$$
$$
Bbb P(|Y| geq |Y|^{1/2}_2)=Bbb P(|Y|^2 geq |Y|_2)le frac{Bbb E|Y|^2}{|Y|_2}=|Y|_2,
$$ and
$$begin{eqnarray}
Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X||Y|right]^2&le& Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|X|^2right]Bbb Eleft[1_{{ |Y| geq |Y|^{1/2}_2 }}|Y|^2right]\
&le&sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]cdot |Y|^2_2
end{eqnarray}$$ by Cauchy-Schwarz. This gives
$$
begin{eqnarray}
mathbb{E} left[ 1_{{ |Y| geq |Y|^{1/2}_2 }} (1+ |X| + |Y|)|Y| right] le |Y|_2left(|Y|_2+|Y|_2^{1/2}+left(sup_{A:Bbb P(A)le |Y|_2}Bbb E[X^2 1_A]right)^{1/2}right)
end{eqnarray}
$$ as desired.
answered Jan 23 at 0:21


SongSong
17.2k21145
17.2k21145
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083881%2fproving-an-inequality-of-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown