Rare Integral $int_0^1 frac{cosh left( alpha cos ^{-1}x right)cos left( alpha sinh ^{-1}x...
$begingroup$
I need to prove if this statement is true, some ideas?
$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I need to prove if this statement is true, some ideas?
$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$
calculus integration definite-integrals
$endgroup$
5
$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05
$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27
$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31
3
$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53
$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49
add a comment |
$begingroup$
I need to prove if this statement is true, some ideas?
$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$
calculus integration definite-integrals
$endgroup$
I need to prove if this statement is true, some ideas?
$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$
calculus integration definite-integrals
calculus integration definite-integrals
edited Sep 3 '17 at 13:12
pisco
11.9k21743
11.9k21743
asked Aug 24 '17 at 16:46
whitexlotuswhitexlotus
37916
37916
5
$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05
$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27
$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31
3
$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53
$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49
add a comment |
5
$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05
$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27
$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31
3
$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53
$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49
5
5
$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05
$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05
$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27
$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27
$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31
$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31
3
3
$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53
$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53
$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49
$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let
$$
F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
$$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
for all $ngeq 1$.
The observation
$$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
implies that
$$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$
Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.
We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
& = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
&= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
some algebraic manipulations are required at the 2nd line.
The integral above and below the branch cut is:
$$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
which says
$$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$
Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
$$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
$$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
$$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.
Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
with $$begin{aligned}
int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
&= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
&= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
where $C'$ is the right portion of the unit circle.
Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
$$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$
The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
$$begin{aligned}
J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
&= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
&= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.
$endgroup$
add a comment |
$begingroup$
Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
$$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
equals:
$$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.
As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.
$endgroup$
$begingroup$
Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
$endgroup$
– Lucian
Aug 30 '17 at 0:49
2
$begingroup$
Missing the "wow" upvote button :)
$endgroup$
– nbubis
Sep 3 '17 at 13:38
$begingroup$
Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
$endgroup$
– nospoon
Jun 5 '18 at 19:54
add a comment |
$begingroup$
Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources
let $x=costheta$, notice that the integrated function is an even function
$$begin{aligned}
int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
& = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& quad (text{let } varphi=pi/2-theta)\
& = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
end{aligned}$$
we start with
$$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$
easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation
$$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$
which indicates
$$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$
thus
$$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$
considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$
$$begin{aligned}
& int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
= & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
end{aligned}$$
which deduces the recurrence relation
$$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$
with $I_{0}(z)=1/z$
$$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$
thus we find this integral
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
& = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
& = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
& = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
& = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
end{aligned}$$
since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)
$$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$
let $zto iz/2$ with $sinh(z)=isin(iz)$ we have
$$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$
the last step is to write
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
& = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
end{aligned}$$
where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2404837%2frare-integral-int-01-frac-cosh-left-alpha-cos-1x-right-cos-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let
$$
F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
$$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
for all $ngeq 1$.
The observation
$$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
implies that
$$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$
Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.
We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
& = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
&= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
some algebraic manipulations are required at the 2nd line.
The integral above and below the branch cut is:
$$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
which says
$$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$
Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
$$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
$$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
$$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.
Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
with $$begin{aligned}
int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
&= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
&= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
where $C'$ is the right portion of the unit circle.
Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
$$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$
The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
$$begin{aligned}
J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
&= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
&= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.
$endgroup$
add a comment |
$begingroup$
This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let
$$
F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
$$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
for all $ngeq 1$.
The observation
$$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
implies that
$$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$
Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.
We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
& = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
&= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
some algebraic manipulations are required at the 2nd line.
The integral above and below the branch cut is:
$$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
which says
$$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$
Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
$$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
$$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
$$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.
Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
with $$begin{aligned}
int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
&= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
&= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
where $C'$ is the right portion of the unit circle.
Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
$$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$
The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
$$begin{aligned}
J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
&= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
&= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.
$endgroup$
add a comment |
$begingroup$
This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let
$$
F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
$$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
for all $ngeq 1$.
The observation
$$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
implies that
$$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$
Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.
We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
& = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
&= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
some algebraic manipulations are required at the 2nd line.
The integral above and below the branch cut is:
$$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
which says
$$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$
Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
$$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
$$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
$$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.
Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
with $$begin{aligned}
int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
&= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
&= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
where $C'$ is the right portion of the unit circle.
Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
$$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$
The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
$$begin{aligned}
J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
&= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
&= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.
$endgroup$
This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let
$$
F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
$$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
for all $ngeq 1$.
The observation
$$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
implies that
$$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$
Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.
We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
& = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
&= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
some algebraic manipulations are required at the 2nd line.
The integral above and below the branch cut is:
$$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
which says
$$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$
Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
$$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
$$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
$$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.
Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
with $$begin{aligned}
int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
&= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
&= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
where $C'$ is the right portion of the unit circle.
Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
$$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$
The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
$$begin{aligned}
J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
&= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
&= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.
edited Jun 5 '18 at 16:12
answered Sep 2 '17 at 17:47
piscopisco
11.9k21743
11.9k21743
add a comment |
add a comment |
$begingroup$
Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
$$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
equals:
$$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.
As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.
$endgroup$
$begingroup$
Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
$endgroup$
– Lucian
Aug 30 '17 at 0:49
2
$begingroup$
Missing the "wow" upvote button :)
$endgroup$
– nbubis
Sep 3 '17 at 13:38
$begingroup$
Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
$endgroup$
– nospoon
Jun 5 '18 at 19:54
add a comment |
$begingroup$
Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
$$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
equals:
$$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.
As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.
$endgroup$
$begingroup$
Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
$endgroup$
– Lucian
Aug 30 '17 at 0:49
2
$begingroup$
Missing the "wow" upvote button :)
$endgroup$
– nbubis
Sep 3 '17 at 13:38
$begingroup$
Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
$endgroup$
– nospoon
Jun 5 '18 at 19:54
add a comment |
$begingroup$
Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
$$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
equals:
$$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.
As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.
$endgroup$
Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
$$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
equals:
$$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.
As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.
edited Aug 24 '17 at 20:20
answered Aug 24 '17 at 20:05


Jack D'AurizioJack D'Aurizio
290k33284666
290k33284666
$begingroup$
Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
$endgroup$
– Lucian
Aug 30 '17 at 0:49
2
$begingroup$
Missing the "wow" upvote button :)
$endgroup$
– nbubis
Sep 3 '17 at 13:38
$begingroup$
Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
$endgroup$
– nospoon
Jun 5 '18 at 19:54
add a comment |
$begingroup$
Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
$endgroup$
– Lucian
Aug 30 '17 at 0:49
2
$begingroup$
Missing the "wow" upvote button :)
$endgroup$
– nbubis
Sep 3 '17 at 13:38
$begingroup$
Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
$endgroup$
– nospoon
Jun 5 '18 at 19:54
$begingroup$
Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
$endgroup$
– Lucian
Aug 30 '17 at 0:49
$begingroup$
Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
$endgroup$
– Lucian
Aug 30 '17 at 0:49
2
2
$begingroup$
Missing the "wow" upvote button :)
$endgroup$
– nbubis
Sep 3 '17 at 13:38
$begingroup$
Missing the "wow" upvote button :)
$endgroup$
– nbubis
Sep 3 '17 at 13:38
$begingroup$
Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
$endgroup$
– nospoon
Jun 5 '18 at 19:54
$begingroup$
Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
$endgroup$
– nospoon
Jun 5 '18 at 19:54
add a comment |
$begingroup$
Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources
let $x=costheta$, notice that the integrated function is an even function
$$begin{aligned}
int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
& = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& quad (text{let } varphi=pi/2-theta)\
& = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
end{aligned}$$
we start with
$$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$
easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation
$$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$
which indicates
$$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$
thus
$$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$
considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$
$$begin{aligned}
& int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
= & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
end{aligned}$$
which deduces the recurrence relation
$$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$
with $I_{0}(z)=1/z$
$$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$
thus we find this integral
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
& = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
& = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
& = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
& = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
end{aligned}$$
since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)
$$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$
let $zto iz/2$ with $sinh(z)=isin(iz)$ we have
$$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$
the last step is to write
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
& = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
end{aligned}$$
where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above
$endgroup$
add a comment |
$begingroup$
Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources
let $x=costheta$, notice that the integrated function is an even function
$$begin{aligned}
int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
& = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& quad (text{let } varphi=pi/2-theta)\
& = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
end{aligned}$$
we start with
$$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$
easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation
$$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$
which indicates
$$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$
thus
$$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$
considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$
$$begin{aligned}
& int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
= & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
end{aligned}$$
which deduces the recurrence relation
$$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$
with $I_{0}(z)=1/z$
$$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$
thus we find this integral
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
& = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
& = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
& = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
& = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
end{aligned}$$
since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)
$$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$
let $zto iz/2$ with $sinh(z)=isin(iz)$ we have
$$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$
the last step is to write
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
& = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
end{aligned}$$
where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above
$endgroup$
add a comment |
$begingroup$
Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources
let $x=costheta$, notice that the integrated function is an even function
$$begin{aligned}
int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
& = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& quad (text{let } varphi=pi/2-theta)\
& = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
end{aligned}$$
we start with
$$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$
easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation
$$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$
which indicates
$$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$
thus
$$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$
considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$
$$begin{aligned}
& int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
= & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
end{aligned}$$
which deduces the recurrence relation
$$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$
with $I_{0}(z)=1/z$
$$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$
thus we find this integral
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
& = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
& = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
& = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
& = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
end{aligned}$$
since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)
$$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$
let $zto iz/2$ with $sinh(z)=isin(iz)$ we have
$$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$
the last step is to write
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
& = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
end{aligned}$$
where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above
$endgroup$
Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources
let $x=costheta$, notice that the integrated function is an even function
$$begin{aligned}
int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
& = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
& quad (text{let } varphi=pi/2-theta)\
& = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
end{aligned}$$
we start with
$$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$
easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation
$$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$
which indicates
$$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$
thus
$$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$
considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$
$$begin{aligned}
& int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
= & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
= & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
end{aligned}$$
which deduces the recurrence relation
$$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$
with $I_{0}(z)=1/z$
$$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$
thus we find this integral
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
& = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
& = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
& = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
& = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
end{aligned}$$
since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)
$$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$
let $zto iz/2$ with $sinh(z)=isin(iz)$ we have
$$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$
the last step is to write
$$begin{aligned}
int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
& = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
& = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
& = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
end{aligned}$$
where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above
edited Jan 20 at 21:06
answered Jan 20 at 20:49
NanayajitzukiNanayajitzuki
3185
3185
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2404837%2frare-integral-int-01-frac-cosh-left-alpha-cos-1x-right-cos-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05
$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27
$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31
3
$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53
$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49