Rare Integral $int_0^1 frac{cosh left( alpha cos ^{-1}x right)cos left( alpha sinh ^{-1}x...












13












$begingroup$


I need to prove if this statement is true, some ideas?



$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
    $endgroup$
    – Michael Hardy
    Aug 24 '17 at 17:05










  • $begingroup$
    By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 19:27










  • $begingroup$
    @JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
    $endgroup$
    – Mark Viola
    Aug 24 '17 at 19:31






  • 3




    $begingroup$
    @MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 20:53










  • $begingroup$
    Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
    $endgroup$
    – nospoon
    Jun 5 '18 at 19:49


















13












$begingroup$


I need to prove if this statement is true, some ideas?



$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
    $endgroup$
    – Michael Hardy
    Aug 24 '17 at 17:05










  • $begingroup$
    By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 19:27










  • $begingroup$
    @JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
    $endgroup$
    – Mark Viola
    Aug 24 '17 at 19:31






  • 3




    $begingroup$
    @MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 20:53










  • $begingroup$
    Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
    $endgroup$
    – nospoon
    Jun 5 '18 at 19:49
















13












13








13


11



$begingroup$


I need to prove if this statement is true, some ideas?



$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$










share|cite|improve this question











$endgroup$




I need to prove if this statement is true, some ideas?



$$int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} , dx = frac pi 4 + frac 1 {2alpha }cdot sinh frac{alpha pi } 2$$







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 3 '17 at 13:12









pisco

11.9k21743




11.9k21743










asked Aug 24 '17 at 16:46









whitexlotuswhitexlotus

37916




37916








  • 5




    $begingroup$
    Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
    $endgroup$
    – Michael Hardy
    Aug 24 '17 at 17:05










  • $begingroup$
    By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 19:27










  • $begingroup$
    @JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
    $endgroup$
    – Mark Viola
    Aug 24 '17 at 19:31






  • 3




    $begingroup$
    @MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 20:53










  • $begingroup$
    Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
    $endgroup$
    – nospoon
    Jun 5 '18 at 19:49
















  • 5




    $begingroup$
    Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
    $endgroup$
    – Michael Hardy
    Aug 24 '17 at 17:05










  • $begingroup$
    By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 19:27










  • $begingroup$
    @JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
    $endgroup$
    – Mark Viola
    Aug 24 '17 at 19:31






  • 3




    $begingroup$
    @MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
    $endgroup$
    – Jack D'Aurizio
    Aug 24 '17 at 20:53










  • $begingroup$
    Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
    $endgroup$
    – nospoon
    Jun 5 '18 at 19:49










5




5




$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05




$begingroup$
Do you have some reason to think it's true? Did you derive it yourself or find it in some book or what?
$endgroup$
– Michael Hardy
Aug 24 '17 at 17:05












$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27




$begingroup$
By substituting $x=costheta$ we are left with $$ int_{0}^{pi/2}cosh(atheta)cosleft(alog(costheta+sqrt{1+cos^2theta})right),dtheta $$ with by parity equals $$ frac{1}{2}int_{-pi/2}^{pi/2}cosh(atheta),underbrace{cosleft(alog(costheta+sqrt{1+cos^2theta})right)}_{text{has the same value at }theta,,theta+pi,,theta+2pitext{ and so on}.},dtheta $$ Maybe this is relevant.
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 19:27












$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31




$begingroup$
@JackD'Aurizio I was too hasty and there was a serious flaw in my now-deleted-post. Apology for posting without checking. I'm pursuing another tact.
$endgroup$
– Mark Viola
Aug 24 '17 at 19:31




3




3




$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53




$begingroup$
@MarkViola: no need for apologies. For the OP: a bit of extra context would not be bad. Where does this integral come from?
$endgroup$
– Jack D'Aurizio
Aug 24 '17 at 20:53












$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49






$begingroup$
Hey, that's an integral I first posted on a site that was then called "integrals and series" in 2016: tapatalk.com/groups/integralsandseries/… It's even written in exactly the same format as I wrote it there.
$endgroup$
– nospoon
Jun 5 '18 at 19:49












3 Answers
3






active

oldest

votes


















10












$begingroup$

This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let



$$
F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
$$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
for all $ngeq 1$.



The observation
$$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
implies that
$$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$





Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.



We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
& = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
&= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
some algebraic manipulations are required at the 2nd line.



The integral above and below the branch cut is:
$$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
which says
$$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$





Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
$$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
$$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
$$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.



Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
with $$begin{aligned}
int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
&= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
&= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
where $C'$ is the right portion of the unit circle.
Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
$$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$





The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
$$begin{aligned}
J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
&= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
&= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.






share|cite|improve this answer











$endgroup$





















    8












    $begingroup$

    Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
    $$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
    equals:
    $$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
    by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.



    As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
      $endgroup$
      – Lucian
      Aug 30 '17 at 0:49








    • 2




      $begingroup$
      Missing the "wow" upvote button :)
      $endgroup$
      – nbubis
      Sep 3 '17 at 13:38










    • $begingroup$
      Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
      $endgroup$
      – nospoon
      Jun 5 '18 at 19:54



















    0












    $begingroup$

    Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources



    let $x=costheta$, notice that the integrated function is an even function



    $$begin{aligned}
    int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
    & = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
    & = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
    & = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
    & quad (text{let } varphi=pi/2-theta)\
    & = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
    end{aligned}$$



    we start with



    $$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$



    easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation



    $$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$



    which indicates



    $$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$



    thus



    $$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$



    considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$



    $$begin{aligned}
    & int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
    = & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
    = & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
    = & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
    end{aligned}$$



    which deduces the recurrence relation



    $$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$



    with $I_{0}(z)=1/z$



    $$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$



    thus we find this integral



    $$begin{aligned}
    int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
    & = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
    & = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
    & = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
    & = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
    & = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
    end{aligned}$$



    since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)



    $$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$



    let $zto iz/2$ with $sinh(z)=isin(iz)$ we have



    $$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$



    the last step is to write



    $$begin{aligned}
    int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
    & = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
    & = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
    & = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
    & = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
    end{aligned}$$



    where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2404837%2frare-integral-int-01-frac-cosh-left-alpha-cos-1x-right-cos-left%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      10












      $begingroup$

      This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let



      $$
      F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
      Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
      $$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
      for all $ngeq 1$.



      The observation
      $$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
      implies that
      $$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$





      Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.



      We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
      & = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
      &= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
      some algebraic manipulations are required at the 2nd line.



      The integral above and below the branch cut is:
      $$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
      which says
      $$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$





      Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
      $$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
      thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
      $$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
      $$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
      where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.



      Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
      with $$begin{aligned}
      int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
      &= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
      &= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
      where $C'$ is the right portion of the unit circle.
      Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
      By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
      $$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$





      The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
      $$begin{aligned}
      J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
      &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
      &= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
      Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.






      share|cite|improve this answer











      $endgroup$


















        10












        $begingroup$

        This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let



        $$
        F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
        Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
        $$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
        for all $ngeq 1$.



        The observation
        $$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
        implies that
        $$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$





        Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.



        We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
        & = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
        &= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
        some algebraic manipulations are required at the 2nd line.



        The integral above and below the branch cut is:
        $$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
        which says
        $$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$





        Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
        $$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
        thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
        $$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
        $$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
        where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.



        Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
        with $$begin{aligned}
        int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
        &= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
        &= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
        where $C'$ is the right portion of the unit circle.
        Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
        By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
        $$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$





        The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
        $$begin{aligned}
        J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
        &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
        &= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
        Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.






        share|cite|improve this answer











        $endgroup$
















          10












          10








          10





          $begingroup$

          This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let



          $$
          F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
          Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
          $$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
          for all $ngeq 1$.



          The observation
          $$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
          implies that
          $$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$





          Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.



          We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
          & = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
          &= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
          some algebraic manipulations are required at the 2nd line.



          The integral above and below the branch cut is:
          $$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
          which says
          $$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$





          Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
          $$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
          thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
          $$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
          $$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
          where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.



          Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
          with $$begin{aligned}
          int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
          &= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
          &= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
          where $C'$ is the right portion of the unit circle.
          Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
          By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
          $$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$





          The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
          $$begin{aligned}
          J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
          &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
          &= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
          Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.






          share|cite|improve this answer











          $endgroup$



          This is not a trivial integral. It has a beautiful, yet subtle, symmetry which is the key for its elegant closed form. Let



          $$
          F(alpha) = int_0^1 frac{coshleft(alpha cos ^{-1}xright)cos left( alpha sinh^{-1} x right)}{sqrt{1-x^2}} dx$$
          Note that $F(0) = pi/2$, and $F(alpha)$ is an even entire function, thus it suffices to prove that
          $$F^{(2n)}(0) = frac{1}{{2(2n + 1)}}{(frac{pi }{2})^{2n + 1}} $$
          for all $ngeq 1$.



          The observation
          $$F(alpha ) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {cosh left[ {alpha left(x - iln (cos x + sqrt {1 + {{cos }^2}x} ) right)} right]dx} $$
          implies that
          $$F^{(2n)}(0) = frac{1}{2}int_{ - frac{pi }{2}}^{frac{pi }{2}} {{{left[ {x - iln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} $$





          Denote $$f(z) = frac{1}{z}{ln ^{2n}}left( {frac{{z + 1 + sqrt {{z^2} + 6z + 1} }}{2}} right)$$ where $ln$ is the principal branch of logarithm, and square root is the one with positive real part. Then $f(z)$ is holormophic in the unit disk except the slit from $-1$ to $-rho$, with $rho = 3-2sqrt{2} approx 0.17$, because $-rho$ is a root of the equation $z^2+6z+1=0$.



          We integrate $f(z)$ with keyhole contour, with $-rho$ and $-1$ outside the contour. Around the unit circle $C$, we have $$begin{aligned}int_C {f(z)dz} &= 2iint_{ - pi/2}^{pi/2} {{{ln }^{2n}}left( {frac{{{e^{2ix}} + 1 + sqrt {{e^{4ix}} + 6{e^{2ix}} + 1} }}{2}} right)dx} \
          & = 2iint_{ - pi/2}^{pi/2} {{{left[ {ix + ln (cos x + sqrt {1 + {{cos }^2}x} )} right]}^{2n}}dx} \
          &= 4i{( - 1)^n}{F^{(2n)}}(0) end{aligned}$$
          some algebraic manipulations are required at the 2nd line.



          The integral above and below the branch cut is:
          $$int_{ - 1}^{ - rho } {frac{1}{x}left[ {{{ln }^{2n}}left( {frac{{x + 1 + isqrt { - ({x^2} + 6x + 1)} }}{2}} right) - {{ln }^{2n}}left( {frac{{x + 1 - isqrt { - ({x^2} + 6x + 1)} }}{2}} right)} right]dx} $$
          which says
          $$-4i{( - 1)^n}{F^{(2n)}}(0) = underbrace{int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x - isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_1} - underbrace{ int_rho ^1 {frac{1}{x}{{ln }^{2n}}left( {frac{{1 - x + isqrt {6x - {x^2} - 1} }}{2}} right)dx}}_{I_2} $$





          Now comes the miracle, when $x$ increases from $rho$ to $1$, the curve $ (1 - x pm isqrt {6x - {x^2} - 1})/2$ traces out a curve $Gamma$ in the right half plane. It passes through $(sqrt{2}-1,0)$ and the two ends are $(0,1)$ and $(0,-1)$. Note that
          $$ u = frac{{1 - x pm isqrt {6x - {x^2} - 1} }}{2} implies x = frac{u(1-u)}{1+u} $$
          thus $dx = (1-2u-u^2)/(1+u)^2$. Therefore
          $$I_1 = int_{Gamma_1} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
          $$I_2 = color{red}{-}int_{Gamma_2} {frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}}{{ln }^{2n}}udu} $$
          where $Gamma_2$ is the portion of $Gamma$ lying in first quadrant, $Gamma_1$ is the portion lying in fourth quadrant, both clockwise.



          Now we close $Gamma$ by adding a vertical segment from $i$ to $-i$, and a small indention to the right at the origin, denote these collectively as $Gamma_3$, with direction from $-i$ to $i$. Note that $$frac{{1 - 2u - {u^2}}}{{u(1 - u)(1 + u)}} = frac{1}{u} - frac{2}{(1+u)(1-u)}$$
          with $$begin{aligned}
          int_{Gamma_3} frac{ln^{2n} u}{u} du &= int_{C'} frac{ln^{2n} u}{u} du \
          &= i int_{-pi/2}^{pi/2} ln^{2n} (e^{itheta}) dtheta \
          &= i int_{-pi/2}^{pi/2} (itheta)^{2n} dtheta = frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} end{aligned}$$
          where $C'$ is the right portion of the unit circle.
          Also $$int_{{Gamma_3}} {frac{{{{ln }^{2n}}u}}{{(1 - u)(1 + u)}}du} = iint_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du} $$
          By integrating $${frac{{1 - 2z - {z^2}}}{{z(1 - z)(1 + z)}}{{ln }^{2z}}z}$$ around the contour formed by $Gamma_1, Gamma_2, Gamma_3$, we have
          $$-2iunderbrace{int_0^1 {frac{1}{{1 + {u^2}}}left[ {{{left( { - frac{pi }{2}i + ln u} right)}^{2n}} + {{left( {frac{pi }{2}i + ln u} right)}^{2n}}} right]du}}_{J} + frac{{2i{{( - 1)}^n}}}{{2n + 1}}{(frac{pi }{2})^{2n + 1}} = 4i{( - 1)^n}{F^{(2n)}}(0)$$





          The final step is showing $J=0$ when $ngeq 1$. Invoking the famous Euler numbers $E_{2k}$, we have
          $$begin{aligned}
          J &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{int_0^1 frac{{{{ln }^{2k}}u}}{{1 + {u^2}}}du} } \
          &= 2sumlimits_{k = 0}^n {binom{2n}{2k}{{(frac{pi }{2}i)}^{2n - 2k}}color{blue}{frac{1}{2}{{(frac{pi }{2})}^{2k + 1}}left| {{E_{2k}}} right|}} \
          &= {(frac{pi }{2})^{2n + 1}}(2n)!sumlimits_{k = 0}^n {frac{{{(-1)^{n - k}}}}{{(2n - 2k)!}}frac{{left| {{E_{2k}}} right|}}{{(2k)!}}} end{aligned}$$
          Since $|E_{2k}|/(2k)!$ are coefficient of $sec x$, the above sum is a Cauchy product between $sec x$ and $cos x$, hence it is $0$ when $ngeq 1$. The proof is finally completed.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jun 5 '18 at 16:12

























          answered Sep 2 '17 at 17:47









          piscopisco

          11.9k21743




          11.9k21743























              8












              $begingroup$

              Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
              $$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
              equals:
              $$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
              by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.



              As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
                $endgroup$
                – Lucian
                Aug 30 '17 at 0:49








              • 2




                $begingroup$
                Missing the "wow" upvote button :)
                $endgroup$
                – nbubis
                Sep 3 '17 at 13:38










              • $begingroup$
                Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
                $endgroup$
                – nospoon
                Jun 5 '18 at 19:54
















              8












              $begingroup$

              Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
              $$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
              equals:
              $$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
              by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.



              As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
                $endgroup$
                – Lucian
                Aug 30 '17 at 0:49








              • 2




                $begingroup$
                Missing the "wow" upvote button :)
                $endgroup$
                – nbubis
                Sep 3 '17 at 13:38










              • $begingroup$
                Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
                $endgroup$
                – nospoon
                Jun 5 '18 at 19:54














              8












              8








              8





              $begingroup$

              Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
              $$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
              equals:
              $$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
              by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.



              As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.






              share|cite|improve this answer











              $endgroup$



              Oh, I think I found a nasty trick. If we denote the integral in the LHS as $I(alpha)$, it should not be difficult to check that $f(alpha)=I(alpha)$ is an entire function in the complex variable $alpha$, and it should not be difficult to prove that its order is $1$. $f(0)=frac{pi}{2}$ is trivial and $f(z)=frac{pi}{4}$ at any $zin 2imathbb{Z}setminus{0}$ just a bit less. $f'(0)=0$ since $f$ is an even function, and
              $$ f''(0)=int_{0}^{1}frac{arccos(x)^2-text{arcsinh}(x)^2}{sqrt{1-x^2}},dx =frac{pi^3}{24}-int_{0}^{pi/2}text{arcsinh}^2(sintheta),dtheta$$
              equals:
              $$ frac{pi^3}{24}-frac{1}{2}int_{0}^{pi/2}sum_{ngeq 1}frac{4^n (-1)^{n+1}(sintheta)^{2n}}{n^2binom{2n}{n}},dtheta=frac{pi^3}{24}-frac{pi^3}{48}=frac{pi^3}{48} $$
              by the Taylor series of the squared arcsine and the well-known $int_{0}^{pi/2}(sintheta)^{2n},dtheta=frac{pi}{2cdot 4^n}binom{2n}{n}$, $sum_{ngeq 1}frac{(-1)^{n+1}}{n^2}=frac{pi^2}{12}$. So, long story short, if we manage to prove that $f(z)-tfrac{pi}{4}$ only vanishes at $2imathbb{Z}setminus{0}$, the claim follows from the Weierstrass product of the sine function and Herglotz' trick. As an alternative, we may try to compute every value of $f^{(2k)}(0)$, but that looks harder at first sight.



              As a second alternative, we may just show that, by integration by parts, $f(alpha)-tfrac{pi}{4}$ is the solution of a differential equation of the form $ zcdot g(z) = frac{pi^2}{4}left(frac{d^2}{dz^2} z,g(z)right)$, then prove the statement by invoking the unicity part of the Cauchy-Lipschitz Theorem.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Aug 24 '17 at 20:20

























              answered Aug 24 '17 at 20:05









              Jack D'AurizioJack D'Aurizio

              290k33284666




              290k33284666












              • $begingroup$
                Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
                $endgroup$
                – Lucian
                Aug 30 '17 at 0:49








              • 2




                $begingroup$
                Missing the "wow" upvote button :)
                $endgroup$
                – nbubis
                Sep 3 '17 at 13:38










              • $begingroup$
                Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
                $endgroup$
                – nospoon
                Jun 5 '18 at 19:54


















              • $begingroup$
                Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
                $endgroup$
                – Lucian
                Aug 30 '17 at 0:49








              • 2




                $begingroup$
                Missing the "wow" upvote button :)
                $endgroup$
                – nbubis
                Sep 3 '17 at 13:38










              • $begingroup$
                Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
                $endgroup$
                – nospoon
                Jun 5 '18 at 19:54
















              $begingroup$
              Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
              $endgroup$
              – Lucian
              Aug 30 '17 at 0:49






              $begingroup$
              Have you tried using the product-to-sum trigonometric formulas for complex values of the argument, in light of $cos(it)=cosh t$ ?
              $endgroup$
              – Lucian
              Aug 30 '17 at 0:49






              2




              2




              $begingroup$
              Missing the "wow" upvote button :)
              $endgroup$
              – nbubis
              Sep 3 '17 at 13:38




              $begingroup$
              Missing the "wow" upvote button :)
              $endgroup$
              – nbubis
              Sep 3 '17 at 13:38












              $begingroup$
              Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
              $endgroup$
              – nospoon
              Jun 5 '18 at 19:54




              $begingroup$
              Hey Jack, you can check my proof of this integral which I posted more than a year before this question was asked: tapatalk.com/groups/integralsandseries/… for some reason the TeX does not render but a chrome extension can fix that.
              $endgroup$
              – nospoon
              Jun 5 '18 at 19:54











              0












              $begingroup$

              Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources



              let $x=costheta$, notice that the integrated function is an even function



              $$begin{aligned}
              int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
              & = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
              & = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
              & = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
              & quad (text{let } varphi=pi/2-theta)\
              & = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
              end{aligned}$$



              we start with



              $$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$



              easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation



              $$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$



              which indicates



              $$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$



              thus



              $$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$



              considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$



              $$begin{aligned}
              & int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
              = & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
              = & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
              = & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
              end{aligned}$$



              which deduces the recurrence relation



              $$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$



              with $I_{0}(z)=1/z$



              $$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$



              thus we find this integral



              $$begin{aligned}
              int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
              & = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
              & = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
              & = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
              & = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
              & = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
              end{aligned}$$



              since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)



              $$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$



              let $zto iz/2$ with $sinh(z)=isin(iz)$ we have



              $$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$



              the last step is to write



              $$begin{aligned}
              int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
              & = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
              & = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
              & = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
              & = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
              end{aligned}$$



              where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources



                let $x=costheta$, notice that the integrated function is an even function



                $$begin{aligned}
                int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
                & = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                & = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                & = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                & quad (text{let } varphi=pi/2-theta)\
                & = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
                end{aligned}$$



                we start with



                $$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$



                easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation



                $$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$



                which indicates



                $$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$



                thus



                $$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$



                considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$



                $$begin{aligned}
                & int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                = & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
                = & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                = & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                end{aligned}$$



                which deduces the recurrence relation



                $$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$



                with $I_{0}(z)=1/z$



                $$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$



                thus we find this integral



                $$begin{aligned}
                int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                & = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
                & = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
                & = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
                & = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
                & = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
                end{aligned}$$



                since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)



                $$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$



                let $zto iz/2$ with $sinh(z)=isin(iz)$ we have



                $$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$



                the last step is to write



                $$begin{aligned}
                int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                & = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
                & = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
                & = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
                & = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                end{aligned}$$



                where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources



                  let $x=costheta$, notice that the integrated function is an even function



                  $$begin{aligned}
                  int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
                  & = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                  & = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                  & = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                  & quad (text{let } varphi=pi/2-theta)\
                  & = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
                  end{aligned}$$



                  we start with



                  $$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$



                  easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation



                  $$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$



                  which indicates



                  $$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$



                  thus



                  $$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$



                  considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$



                  $$begin{aligned}
                  & int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                  = & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
                  = & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                  = & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                  end{aligned}$$



                  which deduces the recurrence relation



                  $$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$



                  with $I_{0}(z)=1/z$



                  $$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$



                  thus we find this integral



                  $$begin{aligned}
                  int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                  & = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
                  & = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
                  & = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
                  & = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
                  & = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
                  end{aligned}$$



                  since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)



                  $$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$



                  let $zto iz/2$ with $sinh(z)=isin(iz)$ we have



                  $$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$



                  the last step is to write



                  $$begin{aligned}
                  int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                  & = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
                  & = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
                  & = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
                  & = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                  end{aligned}$$



                  where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above






                  share|cite|improve this answer











                  $endgroup$



                  Here I unscrambled the prove introduced by $textit{nospoon}$, which I really recommend for it only requires elementary resources



                  let $x=costheta$, notice that the integrated function is an even function



                  $$begin{aligned}
                  int_{0}^{1} {frac{cosh(zarccos x)cos(zoperatorname{arsinh} x)}{sqrt{1-x^2}} mathrm{d}x}
                  & = int_{0}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                  & = frac1{2} int_{-pi/2}^{pi/2} {cosh(ztheta)cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                  & = frac1{2} int_{-pi/2}^{pi/2} {e^{ztheta} cos(zoperatorname{arsinh}(costheta)) mathrm{d}theta}\
                  & quad (text{let } varphi=pi/2-theta)\
                  & = frac{e^{pi z/2}}{2} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
                  end{aligned}$$



                  we start with



                  $$f(x) = cos(zoperatorname{arsinh}x) = sum_{n=0}^{infty} {a_{n} x^{2n}}$$



                  easily get $a_{0}=1$ for $x=0$, from the derivative of $f(x)$ we find this equation



                  $$(x^{2}+1)f''(x)+xf'(x)+z^{2}f(x)=0$$



                  which indicates



                  $$(2n+2)(2n+1) a_{n+1} + (z^{2}+(2n)^{2}) a_{n} = 0$$



                  thus



                  $$a_{n} = frac{(-1)^{n}}{(2n)!} prod_{k=0}^{n-1} {(z^{2}+(2k)^{2})}$$



                  considering a well known integral $I_{n}(z) = int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}$



                  $$begin{aligned}
                  & int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                  = & -frac{e^{-zvarphi}}{z} sin^{2n}!varphi bigr|_{varphi=0}^{infty} + frac{2n}{z} int_{0}^{infty} {e^{-zvarphi} sin^{2n-1}!varphi cosvarphi mathrm{d}varphi}\
                  = & -frac{2n}{z^{2}} sin^{2n-1}!varphi cosvarphi bigr|_{varphi=0}^{infty} + frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi cos^{2}!varphi mathrm{d}varphi} - frac{2n}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                  = & frac{2n(2n-1)}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n-2}!varphi mathrm{d}varphi} - frac{(2n)^2}{z^{2}} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}\
                  end{aligned}$$



                  which deduces the recurrence relation



                  $$I_{n}(z) = frac{2n(2n-1)}{z^{2}+(2n)^{2}}I_{n-1}(z)$$



                  with $I_{0}(z)=1/z$



                  $$I_{n}(z) = frac{(2n)!}{prod_{k=1}^{n} {(z^{2}+(2n)^{2})}} I_{0}(z) = frac{(2n)!}{zprod_{k=1}^{n} {(z^{2}+(2k)^{2})}}$$



                  thus we find this integral



                  $$begin{aligned}
                  int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                  & = int_{0}^{infty} {e^{-zvarphi} sum_{n=0}^{infty}{a_{n}sin^{2n}!varphi} mathrm{d}varphi}\
                  & = sum_{n=0}^{infty} {a_{n} int_{0}^{infty} {e^{-zvarphi} sin^{2n}!varphi mathrm{d}varphi}}\
                  & = sum_{n=0}^{infty} {a_{n} I_{n}(z)}\
                  & = sum_{n=0}^{infty} {(-1)^{n}frac{z}{z^{2}+(2n)^{2}}}\
                  & = frac1{z} + frac1{4} sum_{n=1}^{infty} {(-1)^{n}frac{z}{(z/2)^{2}+(n)^{2}}}
                  end{aligned}$$



                  since (actually, this identity can be proven with the Herglotz trick, also suggested in other answers)



                  $$frac{pi}{sinpi z} = frac1{z} + sum_{n=1}^{infty} {(-1)^{n}frac{2z}{z^{2}-n^{2}}}$$



                  let $zto iz/2$ with $sinh(z)=isin(iz)$ we have



                  $$int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi} = frac1{2z} + frac1{4}frac{pi}{sinh(pi z/2)}$$



                  the last step is to write



                  $$begin{aligned}
                  int_{0}^{infty} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                  & = sum_{k=0}^{infty} {int_{kpi}^{(k+1)pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
                  & = sum_{k=0}^{infty} {e^{-kpi z} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}}\
                  & = frac1{1-e^{-pi z}} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}\
                  & = frac{e^{pi z/2}}{2sinh(pi z/2)} int_{0}^{pi} {e^{-zvarphi} cos(zoperatorname{arsinh}(sinvarphi)) mathrm{d}varphi}
                  end{aligned}$$



                  where the original integral can be proven by times $sinh(pi z/2)$ in both side of the identity above







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 20 at 21:06

























                  answered Jan 20 at 20:49









                  NanayajitzukiNanayajitzuki

                  3185




                  3185






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2404837%2frare-integral-int-01-frac-cosh-left-alpha-cos-1x-right-cos-left%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      Npm cannot find a required file even through it is in the searched directory