Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.












4












$begingroup$


Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.



Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.



By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.



I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.










share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.



    Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.



    By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.



    I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.










    share|cite|improve this question











    $endgroup$















      4












      4








      4


      1



      $begingroup$


      Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.



      Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.



      By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.



      I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.










      share|cite|improve this question











      $endgroup$




      Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.



      Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.



      By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.



      I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.







      inequality a.m.-g.m.-inequality holder-inequality tangent-line-method






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 26 at 21:25









      Michael Rozenberg

      108k1895200




      108k1895200










      asked Jan 26 at 19:26









      ProblemsolvingProblemsolving

      917412




      917412






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            There is an elementary proof?
            $endgroup$
            – Problemsolving
            Jan 26 at 20:57










          • $begingroup$
            There are some more elementary proofs (like the ones below), but this one proves a more general statement.
            $endgroup$
            – L3435
            Jan 27 at 20:43



















          1












          $begingroup$

          Let $f(x)=a^x+b^x , f(3)=f(22)$



          By Holder inequality:



          $$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$



          $$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            We need to prove that
            $$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
            $$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
            $$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
            Now, by AM-GM
            $$2010a^{2011}-2011a^{2010}+1geq0$$ or
            $$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
            Id est, it's enough to prove that
            $$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
            $$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.



            Done!






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088648%2fshow-that-a2014b2014-geq-a2013b2013%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                There is an elementary proof?
                $endgroup$
                – Problemsolving
                Jan 26 at 20:57










              • $begingroup$
                There are some more elementary proofs (like the ones below), but this one proves a more general statement.
                $endgroup$
                – L3435
                Jan 27 at 20:43
















              3












              $begingroup$

              Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                There is an elementary proof?
                $endgroup$
                – Problemsolving
                Jan 26 at 20:57










              • $begingroup$
                There are some more elementary proofs (like the ones below), but this one proves a more general statement.
                $endgroup$
                – L3435
                Jan 27 at 20:43














              3












              3








              3





              $begingroup$

              Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.






              share|cite|improve this answer









              $endgroup$



              Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 26 at 20:32









              L3435L3435

              312




              312












              • $begingroup$
                There is an elementary proof?
                $endgroup$
                – Problemsolving
                Jan 26 at 20:57










              • $begingroup$
                There are some more elementary proofs (like the ones below), but this one proves a more general statement.
                $endgroup$
                – L3435
                Jan 27 at 20:43


















              • $begingroup$
                There is an elementary proof?
                $endgroup$
                – Problemsolving
                Jan 26 at 20:57










              • $begingroup$
                There are some more elementary proofs (like the ones below), but this one proves a more general statement.
                $endgroup$
                – L3435
                Jan 27 at 20:43
















              $begingroup$
              There is an elementary proof?
              $endgroup$
              – Problemsolving
              Jan 26 at 20:57




              $begingroup$
              There is an elementary proof?
              $endgroup$
              – Problemsolving
              Jan 26 at 20:57












              $begingroup$
              There are some more elementary proofs (like the ones below), but this one proves a more general statement.
              $endgroup$
              – L3435
              Jan 27 at 20:43




              $begingroup$
              There are some more elementary proofs (like the ones below), but this one proves a more general statement.
              $endgroup$
              – L3435
              Jan 27 at 20:43











              1












              $begingroup$

              Let $f(x)=a^x+b^x , f(3)=f(22)$



              By Holder inequality:



              $$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$



              $$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Let $f(x)=a^x+b^x , f(3)=f(22)$



                By Holder inequality:



                $$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$



                $$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let $f(x)=a^x+b^x , f(3)=f(22)$



                  By Holder inequality:



                  $$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$



                  $$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$






                  share|cite|improve this answer









                  $endgroup$



                  Let $f(x)=a^x+b^x , f(3)=f(22)$



                  By Holder inequality:



                  $$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$



                  $$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 26 at 21:14









                  Sergic PrimazonSergic Primazon

                  53225




                  53225























                      0












                      $begingroup$

                      We need to prove that
                      $$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
                      $$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
                      $$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
                      Now, by AM-GM
                      $$2010a^{2011}-2011a^{2010}+1geq0$$ or
                      $$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
                      Id est, it's enough to prove that
                      $$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
                      $$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.



                      Done!






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        We need to prove that
                        $$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
                        $$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
                        $$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
                        Now, by AM-GM
                        $$2010a^{2011}-2011a^{2010}+1geq0$$ or
                        $$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
                        Id est, it's enough to prove that
                        $$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
                        $$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.



                        Done!






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          We need to prove that
                          $$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
                          $$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
                          $$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
                          Now, by AM-GM
                          $$2010a^{2011}-2011a^{2010}+1geq0$$ or
                          $$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
                          Id est, it's enough to prove that
                          $$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
                          $$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.



                          Done!






                          share|cite|improve this answer









                          $endgroup$



                          We need to prove that
                          $$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
                          $$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
                          $$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
                          Now, by AM-GM
                          $$2010a^{2011}-2011a^{2010}+1geq0$$ or
                          $$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
                          Id est, it's enough to prove that
                          $$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
                          $$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.



                          Done!







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 26 at 21:23









                          Michael RozenbergMichael Rozenberg

                          108k1895200




                          108k1895200






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088648%2fshow-that-a2014b2014-geq-a2013b2013%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith