Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.
$begingroup$
Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.
Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.
By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.
I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.
inequality a.m.-g.m.-inequality holder-inequality tangent-line-method
$endgroup$
add a comment |
$begingroup$
Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.
Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.
By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.
I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.
inequality a.m.-g.m.-inequality holder-inequality tangent-line-method
$endgroup$
add a comment |
$begingroup$
Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.
Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.
By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.
I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.
inequality a.m.-g.m.-inequality holder-inequality tangent-line-method
$endgroup$
Let $ a, bin mathbb {R}_{+} $ s.t. $a^{22}+b^{22}=a^{3}+b^{3} $.
Show that $a^{2014}+b^{2014}geq a^{2013}+b^{2013} $.
By Chebyshev's inequality we obtain $a^{19}+b^{19}leq 2Leftrightarrow b^{19}-1leq 1-a^{19}Leftrightarrow (b-1)(b^{18}+b^{17}+...+b+1)leq (1-a)(a^{18}+a^{17}+...+a+1) $.
I supposed $bgeq 1geq a $. Then $ b^{18}+b^{17}+...+b+1geq a^{18}+a^{17}+...+a+1$. Then $b-1leq 1-a Leftrightarrow a+bleq 2$. Now I am stuck.
inequality a.m.-g.m.-inequality holder-inequality tangent-line-method
inequality a.m.-g.m.-inequality holder-inequality tangent-line-method
edited Jan 26 at 21:25
Michael Rozenberg
108k1895200
108k1895200
asked Jan 26 at 19:26
ProblemsolvingProblemsolving
917412
917412
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.
$endgroup$
$begingroup$
There is an elementary proof?
$endgroup$
– Problemsolving
Jan 26 at 20:57
$begingroup$
There are some more elementary proofs (like the ones below), but this one proves a more general statement.
$endgroup$
– L3435
Jan 27 at 20:43
add a comment |
$begingroup$
Let $f(x)=a^x+b^x , f(3)=f(22)$
By Holder inequality:
$$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$
$$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$
$endgroup$
add a comment |
$begingroup$
We need to prove that
$$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
$$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
$$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
Now, by AM-GM
$$2010a^{2011}-2011a^{2010}+1geq0$$ or
$$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
Id est, it's enough to prove that
$$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
$$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.
Done!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088648%2fshow-that-a2014b2014-geq-a2013b2013%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.
$endgroup$
$begingroup$
There is an elementary proof?
$endgroup$
– Problemsolving
Jan 26 at 20:57
$begingroup$
There are some more elementary proofs (like the ones below), but this one proves a more general statement.
$endgroup$
– L3435
Jan 27 at 20:43
add a comment |
$begingroup$
Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.
$endgroup$
$begingroup$
There is an elementary proof?
$endgroup$
– Problemsolving
Jan 26 at 20:57
$begingroup$
There are some more elementary proofs (like the ones below), but this one proves a more general statement.
$endgroup$
– L3435
Jan 27 at 20:43
add a comment |
$begingroup$
Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.
$endgroup$
Suppose $a, bne 1$. Let $f(x)=a^x+b^x$. The function is continuous, so its derivative has a root in $[3, 22]$. For $x_0$ to be a root of the derivative, the equation $$left(frac abright)^{x_0}=-frac{ln{b}}{ln{a}}$$ must hold. We can see that $x_0$ is unique, so the only root of $f'$ is in $[3, 22]$. Since for $xrightarrowinfty$ we have $f(x)rightarrowinfty$ (at least one of $a, b$ is $>1$), the derivative is positive for $x>22$, so $f(m)>f(n)$ for all $m>n>22$. In the case $m=2014$ and $n=2013$, we get the above inequality.
answered Jan 26 at 20:32
L3435L3435
312
312
$begingroup$
There is an elementary proof?
$endgroup$
– Problemsolving
Jan 26 at 20:57
$begingroup$
There are some more elementary proofs (like the ones below), but this one proves a more general statement.
$endgroup$
– L3435
Jan 27 at 20:43
add a comment |
$begingroup$
There is an elementary proof?
$endgroup$
– Problemsolving
Jan 26 at 20:57
$begingroup$
There are some more elementary proofs (like the ones below), but this one proves a more general statement.
$endgroup$
– L3435
Jan 27 at 20:43
$begingroup$
There is an elementary proof?
$endgroup$
– Problemsolving
Jan 26 at 20:57
$begingroup$
There is an elementary proof?
$endgroup$
– Problemsolving
Jan 26 at 20:57
$begingroup$
There are some more elementary proofs (like the ones below), but this one proves a more general statement.
$endgroup$
– L3435
Jan 27 at 20:43
$begingroup$
There are some more elementary proofs (like the ones below), but this one proves a more general statement.
$endgroup$
– L3435
Jan 27 at 20:43
add a comment |
$begingroup$
Let $f(x)=a^x+b^x , f(3)=f(22)$
By Holder inequality:
$$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$
$$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$
$endgroup$
add a comment |
$begingroup$
Let $f(x)=a^x+b^x , f(3)=f(22)$
By Holder inequality:
$$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$
$$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$
$endgroup$
add a comment |
$begingroup$
Let $f(x)=a^x+b^x , f(3)=f(22)$
By Holder inequality:
$$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$
$$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$
$endgroup$
Let $f(x)=a^x+b^x , f(3)=f(22)$
By Holder inequality:
$$ left( f(3) right )^{frac{1991}{2010}}cdot (f(2013))^{1-frac{1991}{2010}} ge f(22) Rightarrow f(2013)ge f(22)=f(3)$$
$$left( f(22 right )^{frac{1}{1992}}cdot (f(2014))^{1-frac{1}{1992}} ge f(2013) Rightarrow f(2014) ge f(2013)$$
answered Jan 26 at 21:14
Sergic PrimazonSergic Primazon
53225
53225
add a comment |
add a comment |
$begingroup$
We need to prove that
$$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
$$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
$$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
Now, by AM-GM
$$2010a^{2011}-2011a^{2010}+1geq0$$ or
$$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
Id est, it's enough to prove that
$$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
$$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.
Done!
$endgroup$
add a comment |
$begingroup$
We need to prove that
$$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
$$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
$$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
Now, by AM-GM
$$2010a^{2011}-2011a^{2010}+1geq0$$ or
$$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
Id est, it's enough to prove that
$$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
$$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.
Done!
$endgroup$
add a comment |
$begingroup$
We need to prove that
$$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
$$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
$$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
Now, by AM-GM
$$2010a^{2011}-2011a^{2010}+1geq0$$ or
$$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
Id est, it's enough to prove that
$$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
$$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.
Done!
$endgroup$
We need to prove that
$$sum_{cyc}left(a^{2014}-a^{2013}right)geq0$$ or
$$sum_{cyc}left(a^{2014}-a^{2013}-frac{1}{19}left(a^{22}-a^3right)right)geq0$$ or
$$sum_{cyc}a^3left(19a^{2011}-19a^{2010}-a^{19}+1right)geq0.$$
Now, by AM-GM
$$2010a^{2011}-2011a^{2010}+1geq0$$ or
$$19a^{2011}-frac{19cdot2011}{2010}a^{2010}+frac{19}{2010}geq0.$$
Id est, it's enough to prove that
$$left(frac{19cdot2011}{2010}-19right)a^{2010}-a^{19}+1-frac{19}{2010}geq0$$ or
$$19a^{2010}-2010a^{19}+1991geq0,$$ which is AM-GM again.
Done!
answered Jan 26 at 21:23
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088648%2fshow-that-a2014b2014-geq-a2013b2013%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown