The radical of the product of two ideals is the intersection of the radicals of the ideals
$begingroup$
Let $R$ be a Noetherian ring (not sure if "Noetherianness" is needed). I'm trying to show that $r(IJ)=r(I)cap r(J)$ ($r$ for radical).
One direction looks easy. If $xin r(IJ)$, then for some $k$, $x^kin IJ$. Since $IJsubset Icap J$, $x^kin Icap J$, so $xin r(I)cap r(J)$.
The other direction is not clear to me. Let $xin r(I)cap r(J)$. Then $x^nin I, x^min J$. So $x^{max(n,m)}in Icap J$. If $I+J=R$, then $Icap Jsubset IJ$, and I would be able to conclude that $xin r(IJ)$. But it need not be the casse that $I+J=R$. How do I proceed then?
abstract-algebra ring-theory ideals
$endgroup$
add a comment |
$begingroup$
Let $R$ be a Noetherian ring (not sure if "Noetherianness" is needed). I'm trying to show that $r(IJ)=r(I)cap r(J)$ ($r$ for radical).
One direction looks easy. If $xin r(IJ)$, then for some $k$, $x^kin IJ$. Since $IJsubset Icap J$, $x^kin Icap J$, so $xin r(I)cap r(J)$.
The other direction is not clear to me. Let $xin r(I)cap r(J)$. Then $x^nin I, x^min J$. So $x^{max(n,m)}in Icap J$. If $I+J=R$, then $Icap Jsubset IJ$, and I would be able to conclude that $xin r(IJ)$. But it need not be the casse that $I+J=R$. How do I proceed then?
abstract-algebra ring-theory ideals
$endgroup$
3
$begingroup$
If $x^nin I$ and $x^min J$, then $x^{n+m}in IJ$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 22:14
$begingroup$
@LordSharktheUnknown Oh well apparently I didn't bother to consider $x^nx^m=x^{n+m}$...
$endgroup$
– user437309
Jan 26 at 22:19
add a comment |
$begingroup$
Let $R$ be a Noetherian ring (not sure if "Noetherianness" is needed). I'm trying to show that $r(IJ)=r(I)cap r(J)$ ($r$ for radical).
One direction looks easy. If $xin r(IJ)$, then for some $k$, $x^kin IJ$. Since $IJsubset Icap J$, $x^kin Icap J$, so $xin r(I)cap r(J)$.
The other direction is not clear to me. Let $xin r(I)cap r(J)$. Then $x^nin I, x^min J$. So $x^{max(n,m)}in Icap J$. If $I+J=R$, then $Icap Jsubset IJ$, and I would be able to conclude that $xin r(IJ)$. But it need not be the casse that $I+J=R$. How do I proceed then?
abstract-algebra ring-theory ideals
$endgroup$
Let $R$ be a Noetherian ring (not sure if "Noetherianness" is needed). I'm trying to show that $r(IJ)=r(I)cap r(J)$ ($r$ for radical).
One direction looks easy. If $xin r(IJ)$, then for some $k$, $x^kin IJ$. Since $IJsubset Icap J$, $x^kin Icap J$, so $xin r(I)cap r(J)$.
The other direction is not clear to me. Let $xin r(I)cap r(J)$. Then $x^nin I, x^min J$. So $x^{max(n,m)}in Icap J$. If $I+J=R$, then $Icap Jsubset IJ$, and I would be able to conclude that $xin r(IJ)$. But it need not be the casse that $I+J=R$. How do I proceed then?
abstract-algebra ring-theory ideals
abstract-algebra ring-theory ideals
asked Jan 26 at 22:11
user437309user437309
766314
766314
3
$begingroup$
If $x^nin I$ and $x^min J$, then $x^{n+m}in IJ$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 22:14
$begingroup$
@LordSharktheUnknown Oh well apparently I didn't bother to consider $x^nx^m=x^{n+m}$...
$endgroup$
– user437309
Jan 26 at 22:19
add a comment |
3
$begingroup$
If $x^nin I$ and $x^min J$, then $x^{n+m}in IJ$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 22:14
$begingroup$
@LordSharktheUnknown Oh well apparently I didn't bother to consider $x^nx^m=x^{n+m}$...
$endgroup$
– user437309
Jan 26 at 22:19
3
3
$begingroup$
If $x^nin I$ and $x^min J$, then $x^{n+m}in IJ$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 22:14
$begingroup$
If $x^nin I$ and $x^min J$, then $x^{n+m}in IJ$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 22:14
$begingroup$
@LordSharktheUnknown Oh well apparently I didn't bother to consider $x^nx^m=x^{n+m}$...
$endgroup$
– user437309
Jan 26 at 22:19
$begingroup$
@LordSharktheUnknown Oh well apparently I didn't bother to consider $x^nx^m=x^{n+m}$...
$endgroup$
– user437309
Jan 26 at 22:19
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: What can you say about $x^mtimes x^n$?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088839%2fthe-radical-of-the-product-of-two-ideals-is-the-intersection-of-the-radicals-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: What can you say about $x^mtimes x^n$?
$endgroup$
add a comment |
$begingroup$
Hint: What can you say about $x^mtimes x^n$?
$endgroup$
add a comment |
$begingroup$
Hint: What can you say about $x^mtimes x^n$?
$endgroup$
Hint: What can you say about $x^mtimes x^n$?
answered Jan 26 at 22:17


ScientificaScientifica
6,82941335
6,82941335
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088839%2fthe-radical-of-the-product-of-two-ideals-is-the-intersection-of-the-radicals-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
If $x^nin I$ and $x^min J$, then $x^{n+m}in IJ$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 22:14
$begingroup$
@LordSharktheUnknown Oh well apparently I didn't bother to consider $x^nx^m=x^{n+m}$...
$endgroup$
– user437309
Jan 26 at 22:19