Write a C program to find a root of $x^3 - 3*x + 1 = 0$ by fixed point iteration method (including...












1












$begingroup$


The code works fine. But I want to include the convergence criterion which is as follows:



if the equation is written in the form $x=g(x)$, then condition of convergence is: $g'(x)<1$.



Note that: $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$



Please modify my code for convergence.



  /* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include<stdio.h>
#include<conio.h>
#include<math.h>
float g(float x)
{
return(pow((3*x-1), (.3333 )));
}

void main()
{
int n, i ;
float x0 ,xl ;
clrscr() ;
printf ("Enter xO , n");
scanf ("%f%d" ,&x0,&n);
for (i= 1;i<=n;i++ )
{

xl=g(x0);
printf("tt i=%d tt x1=%fnn", i,xl);
if(fabs (xl-x0)<.0001)
break ;
else
x0=xl;
}
printf ("The root is %£ ", xl);
getch();
}









share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    What's your question then?
    $endgroup$
    – caverac
    Jan 21 at 11:36










  • $begingroup$
    @caverac code for convergence
    $endgroup$
    – user1942348
    Jan 21 at 11:38










  • $begingroup$
    1) Have you found $g$? 2) Can you differentiate $g$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:47












  • $begingroup$
    @mathreadler $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$
    $endgroup$
    – user1942348
    Jan 21 at 11:53










  • $begingroup$
    yep, and you see how $g$ is implemented in the code, I presume. how can you copy the code for $g$ and modify it to do $g'$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:55
















1












$begingroup$


The code works fine. But I want to include the convergence criterion which is as follows:



if the equation is written in the form $x=g(x)$, then condition of convergence is: $g'(x)<1$.



Note that: $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$



Please modify my code for convergence.



  /* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include<stdio.h>
#include<conio.h>
#include<math.h>
float g(float x)
{
return(pow((3*x-1), (.3333 )));
}

void main()
{
int n, i ;
float x0 ,xl ;
clrscr() ;
printf ("Enter xO , n");
scanf ("%f%d" ,&x0,&n);
for (i= 1;i<=n;i++ )
{

xl=g(x0);
printf("tt i=%d tt x1=%fnn", i,xl);
if(fabs (xl-x0)<.0001)
break ;
else
x0=xl;
}
printf ("The root is %£ ", xl);
getch();
}









share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    What's your question then?
    $endgroup$
    – caverac
    Jan 21 at 11:36










  • $begingroup$
    @caverac code for convergence
    $endgroup$
    – user1942348
    Jan 21 at 11:38










  • $begingroup$
    1) Have you found $g$? 2) Can you differentiate $g$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:47












  • $begingroup$
    @mathreadler $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$
    $endgroup$
    – user1942348
    Jan 21 at 11:53










  • $begingroup$
    yep, and you see how $g$ is implemented in the code, I presume. how can you copy the code for $g$ and modify it to do $g'$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:55














1












1








1


1



$begingroup$


The code works fine. But I want to include the convergence criterion which is as follows:



if the equation is written in the form $x=g(x)$, then condition of convergence is: $g'(x)<1$.



Note that: $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$



Please modify my code for convergence.



  /* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include<stdio.h>
#include<conio.h>
#include<math.h>
float g(float x)
{
return(pow((3*x-1), (.3333 )));
}

void main()
{
int n, i ;
float x0 ,xl ;
clrscr() ;
printf ("Enter xO , n");
scanf ("%f%d" ,&x0,&n);
for (i= 1;i<=n;i++ )
{

xl=g(x0);
printf("tt i=%d tt x1=%fnn", i,xl);
if(fabs (xl-x0)<.0001)
break ;
else
x0=xl;
}
printf ("The root is %£ ", xl);
getch();
}









share|cite|improve this question











$endgroup$




The code works fine. But I want to include the convergence criterion which is as follows:



if the equation is written in the form $x=g(x)$, then condition of convergence is: $g'(x)<1$.



Note that: $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$



Please modify my code for convergence.



  /* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include<stdio.h>
#include<conio.h>
#include<math.h>
float g(float x)
{
return(pow((3*x-1), (.3333 )));
}

void main()
{
int n, i ;
float x0 ,xl ;
clrscr() ;
printf ("Enter xO , n");
scanf ("%f%d" ,&x0,&n);
for (i= 1;i<=n;i++ )
{

xl=g(x0);
printf("tt i=%d tt x1=%fnn", i,xl);
if(fabs (xl-x0)<.0001)
break ;
else
x0=xl;
}
printf ("The root is %£ ", xl);
getch();
}






numerical-methods fixed-point-theorems






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 11:54







user1942348

















asked Jan 21 at 11:34









user1942348user1942348

1,3851934




1,3851934








  • 3




    $begingroup$
    What's your question then?
    $endgroup$
    – caverac
    Jan 21 at 11:36










  • $begingroup$
    @caverac code for convergence
    $endgroup$
    – user1942348
    Jan 21 at 11:38










  • $begingroup$
    1) Have you found $g$? 2) Can you differentiate $g$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:47












  • $begingroup$
    @mathreadler $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$
    $endgroup$
    – user1942348
    Jan 21 at 11:53










  • $begingroup$
    yep, and you see how $g$ is implemented in the code, I presume. how can you copy the code for $g$ and modify it to do $g'$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:55














  • 3




    $begingroup$
    What's your question then?
    $endgroup$
    – caverac
    Jan 21 at 11:36










  • $begingroup$
    @caverac code for convergence
    $endgroup$
    – user1942348
    Jan 21 at 11:38










  • $begingroup$
    1) Have you found $g$? 2) Can you differentiate $g$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:47












  • $begingroup$
    @mathreadler $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$
    $endgroup$
    – user1942348
    Jan 21 at 11:53










  • $begingroup$
    yep, and you see how $g$ is implemented in the code, I presume. how can you copy the code for $g$ and modify it to do $g'$?
    $endgroup$
    – mathreadler
    Jan 21 at 11:55








3




3




$begingroup$
What's your question then?
$endgroup$
– caverac
Jan 21 at 11:36




$begingroup$
What's your question then?
$endgroup$
– caverac
Jan 21 at 11:36












$begingroup$
@caverac code for convergence
$endgroup$
– user1942348
Jan 21 at 11:38




$begingroup$
@caverac code for convergence
$endgroup$
– user1942348
Jan 21 at 11:38












$begingroup$
1) Have you found $g$? 2) Can you differentiate $g$?
$endgroup$
– mathreadler
Jan 21 at 11:47






$begingroup$
1) Have you found $g$? 2) Can you differentiate $g$?
$endgroup$
– mathreadler
Jan 21 at 11:47














$begingroup$
@mathreadler $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$
$endgroup$
– user1942348
Jan 21 at 11:53




$begingroup$
@mathreadler $g(x)=sqrt [3]{3,x-1}$ and $g'(x)=left( 3,x-1 right) ^{-2/3}$
$endgroup$
– user1942348
Jan 21 at 11:53












$begingroup$
yep, and you see how $g$ is implemented in the code, I presume. how can you copy the code for $g$ and modify it to do $g'$?
$endgroup$
– mathreadler
Jan 21 at 11:55




$begingroup$
yep, and you see how $g$ is implemented in the code, I presume. how can you copy the code for $g$ and modify it to do $g'$?
$endgroup$
– mathreadler
Jan 21 at 11:55










1 Answer
1






active

oldest

votes


















1












$begingroup$

Cleaned the code a bit, and used another function $g(x) = (x^3 + 1)/3$ and $g'(x) = x^2$. So as long as you start in $|x|<1$ convergence will work



/* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include <stdio.h>
#include <math.h>

float g(float x)
{
return (x * x * x + 1) / 3.;
}

float dg(float x)
{
return x * x;
}

int main()
{
int n, i;
float x0, xl, d;
char convergence;
printf ("Enter x0, n: ");
scanf ("%f %d", &x0, &n);

for (i = 1; i <= n; i ++)
{
xl = g(x0);
d = dg(x0);
convergence = fabs(d) < 1 ? 't' : 'f';

printf("tt i = %d tt x1 = %f tt g'(x1) = %f tt convergence = %cn", i, xl, d, convergence);
if(fabs (xl - x0) < .0001)
break;
else
x0 = xl;
}

printf ("The root is %fn", xl);
}


This is a test



Enter x0, n: 0.1 10
i = 1 x1 = 0.333667 g'(x1) = 0.010000 convergence = t
i = 2 x1 = 0.345716 g'(x1) = 0.111333 convergence = t
i = 3 x1 = 0.347107 g'(x1) = 0.119520 convergence = t
i = 4 x1 = 0.347273 g'(x1) = 0.120483 convergence = t
i = 5 x1 = 0.347294 g'(x1) = 0.120599 convergence = t
The root is 0.347294





share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you. Please explain the line "convergence = fabs(d) < 1 ? 't' : 'f';" Also, if g'(x1) >=1, please, I want to get a message of non-convergence
    $endgroup$
    – user1942348
    Jan 21 at 12:30








  • 1




    $begingroup$
    @user1942348 That is short for if (fabs(d)) < 1 then convergence = true, else convergence = false. You can modify that bit at your convenience
    $endgroup$
    – caverac
    Jan 21 at 12:41










  • $begingroup$
    This code works good for |x|<1 only
    $endgroup$
    – user1942348
    Jan 21 at 12:48










  • $begingroup$
    There is a root 1.5319 also. How to catch that root
    $endgroup$
    – user1942348
    Jan 21 at 13:00








  • 1




    $begingroup$
    @user1942348 You can manipulate the function $g$ to ensure convergence. For example $g(x) = (3x - 1)^{1/3}$ has $g'(1.53) < 1$, so you could try that version of $g$ instead
    $endgroup$
    – caverac
    Jan 21 at 13:05











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081771%2fwrite-a-c-program-to-find-a-root-of-x3-3x-1-0-by-fixed-point-iteration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Cleaned the code a bit, and used another function $g(x) = (x^3 + 1)/3$ and $g'(x) = x^2$. So as long as you start in $|x|<1$ convergence will work



/* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include <stdio.h>
#include <math.h>

float g(float x)
{
return (x * x * x + 1) / 3.;
}

float dg(float x)
{
return x * x;
}

int main()
{
int n, i;
float x0, xl, d;
char convergence;
printf ("Enter x0, n: ");
scanf ("%f %d", &x0, &n);

for (i = 1; i <= n; i ++)
{
xl = g(x0);
d = dg(x0);
convergence = fabs(d) < 1 ? 't' : 'f';

printf("tt i = %d tt x1 = %f tt g'(x1) = %f tt convergence = %cn", i, xl, d, convergence);
if(fabs (xl - x0) < .0001)
break;
else
x0 = xl;
}

printf ("The root is %fn", xl);
}


This is a test



Enter x0, n: 0.1 10
i = 1 x1 = 0.333667 g'(x1) = 0.010000 convergence = t
i = 2 x1 = 0.345716 g'(x1) = 0.111333 convergence = t
i = 3 x1 = 0.347107 g'(x1) = 0.119520 convergence = t
i = 4 x1 = 0.347273 g'(x1) = 0.120483 convergence = t
i = 5 x1 = 0.347294 g'(x1) = 0.120599 convergence = t
The root is 0.347294





share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you. Please explain the line "convergence = fabs(d) < 1 ? 't' : 'f';" Also, if g'(x1) >=1, please, I want to get a message of non-convergence
    $endgroup$
    – user1942348
    Jan 21 at 12:30








  • 1




    $begingroup$
    @user1942348 That is short for if (fabs(d)) < 1 then convergence = true, else convergence = false. You can modify that bit at your convenience
    $endgroup$
    – caverac
    Jan 21 at 12:41










  • $begingroup$
    This code works good for |x|<1 only
    $endgroup$
    – user1942348
    Jan 21 at 12:48










  • $begingroup$
    There is a root 1.5319 also. How to catch that root
    $endgroup$
    – user1942348
    Jan 21 at 13:00








  • 1




    $begingroup$
    @user1942348 You can manipulate the function $g$ to ensure convergence. For example $g(x) = (3x - 1)^{1/3}$ has $g'(1.53) < 1$, so you could try that version of $g$ instead
    $endgroup$
    – caverac
    Jan 21 at 13:05
















1












$begingroup$

Cleaned the code a bit, and used another function $g(x) = (x^3 + 1)/3$ and $g'(x) = x^2$. So as long as you start in $|x|<1$ convergence will work



/* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include <stdio.h>
#include <math.h>

float g(float x)
{
return (x * x * x + 1) / 3.;
}

float dg(float x)
{
return x * x;
}

int main()
{
int n, i;
float x0, xl, d;
char convergence;
printf ("Enter x0, n: ");
scanf ("%f %d", &x0, &n);

for (i = 1; i <= n; i ++)
{
xl = g(x0);
d = dg(x0);
convergence = fabs(d) < 1 ? 't' : 'f';

printf("tt i = %d tt x1 = %f tt g'(x1) = %f tt convergence = %cn", i, xl, d, convergence);
if(fabs (xl - x0) < .0001)
break;
else
x0 = xl;
}

printf ("The root is %fn", xl);
}


This is a test



Enter x0, n: 0.1 10
i = 1 x1 = 0.333667 g'(x1) = 0.010000 convergence = t
i = 2 x1 = 0.345716 g'(x1) = 0.111333 convergence = t
i = 3 x1 = 0.347107 g'(x1) = 0.119520 convergence = t
i = 4 x1 = 0.347273 g'(x1) = 0.120483 convergence = t
i = 5 x1 = 0.347294 g'(x1) = 0.120599 convergence = t
The root is 0.347294





share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you. Please explain the line "convergence = fabs(d) < 1 ? 't' : 'f';" Also, if g'(x1) >=1, please, I want to get a message of non-convergence
    $endgroup$
    – user1942348
    Jan 21 at 12:30








  • 1




    $begingroup$
    @user1942348 That is short for if (fabs(d)) < 1 then convergence = true, else convergence = false. You can modify that bit at your convenience
    $endgroup$
    – caverac
    Jan 21 at 12:41










  • $begingroup$
    This code works good for |x|<1 only
    $endgroup$
    – user1942348
    Jan 21 at 12:48










  • $begingroup$
    There is a root 1.5319 also. How to catch that root
    $endgroup$
    – user1942348
    Jan 21 at 13:00








  • 1




    $begingroup$
    @user1942348 You can manipulate the function $g$ to ensure convergence. For example $g(x) = (3x - 1)^{1/3}$ has $g'(1.53) < 1$, so you could try that version of $g$ instead
    $endgroup$
    – caverac
    Jan 21 at 13:05














1












1








1





$begingroup$

Cleaned the code a bit, and used another function $g(x) = (x^3 + 1)/3$ and $g'(x) = x^2$. So as long as you start in $|x|<1$ convergence will work



/* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include <stdio.h>
#include <math.h>

float g(float x)
{
return (x * x * x + 1) / 3.;
}

float dg(float x)
{
return x * x;
}

int main()
{
int n, i;
float x0, xl, d;
char convergence;
printf ("Enter x0, n: ");
scanf ("%f %d", &x0, &n);

for (i = 1; i <= n; i ++)
{
xl = g(x0);
d = dg(x0);
convergence = fabs(d) < 1 ? 't' : 'f';

printf("tt i = %d tt x1 = %f tt g'(x1) = %f tt convergence = %cn", i, xl, d, convergence);
if(fabs (xl - x0) < .0001)
break;
else
x0 = xl;
}

printf ("The root is %fn", xl);
}


This is a test



Enter x0, n: 0.1 10
i = 1 x1 = 0.333667 g'(x1) = 0.010000 convergence = t
i = 2 x1 = 0.345716 g'(x1) = 0.111333 convergence = t
i = 3 x1 = 0.347107 g'(x1) = 0.119520 convergence = t
i = 4 x1 = 0.347273 g'(x1) = 0.120483 convergence = t
i = 5 x1 = 0.347294 g'(x1) = 0.120599 convergence = t
The root is 0.347294





share|cite|improve this answer









$endgroup$



Cleaned the code a bit, and used another function $g(x) = (x^3 + 1)/3$ and $g'(x) = x^2$. So as long as you start in $|x|<1$ convergence will work



/* g (x) = (3x - l)^(l/3 ), x0=5 */
/* Fixed po int of Iteration Method */
#include <stdio.h>
#include <math.h>

float g(float x)
{
return (x * x * x + 1) / 3.;
}

float dg(float x)
{
return x * x;
}

int main()
{
int n, i;
float x0, xl, d;
char convergence;
printf ("Enter x0, n: ");
scanf ("%f %d", &x0, &n);

for (i = 1; i <= n; i ++)
{
xl = g(x0);
d = dg(x0);
convergence = fabs(d) < 1 ? 't' : 'f';

printf("tt i = %d tt x1 = %f tt g'(x1) = %f tt convergence = %cn", i, xl, d, convergence);
if(fabs (xl - x0) < .0001)
break;
else
x0 = xl;
}

printf ("The root is %fn", xl);
}


This is a test



Enter x0, n: 0.1 10
i = 1 x1 = 0.333667 g'(x1) = 0.010000 convergence = t
i = 2 x1 = 0.345716 g'(x1) = 0.111333 convergence = t
i = 3 x1 = 0.347107 g'(x1) = 0.119520 convergence = t
i = 4 x1 = 0.347273 g'(x1) = 0.120483 convergence = t
i = 5 x1 = 0.347294 g'(x1) = 0.120599 convergence = t
The root is 0.347294






share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 21 at 12:27









caveraccaverac

14.8k31130




14.8k31130












  • $begingroup$
    Thank you. Please explain the line "convergence = fabs(d) < 1 ? 't' : 'f';" Also, if g'(x1) >=1, please, I want to get a message of non-convergence
    $endgroup$
    – user1942348
    Jan 21 at 12:30








  • 1




    $begingroup$
    @user1942348 That is short for if (fabs(d)) < 1 then convergence = true, else convergence = false. You can modify that bit at your convenience
    $endgroup$
    – caverac
    Jan 21 at 12:41










  • $begingroup$
    This code works good for |x|<1 only
    $endgroup$
    – user1942348
    Jan 21 at 12:48










  • $begingroup$
    There is a root 1.5319 also. How to catch that root
    $endgroup$
    – user1942348
    Jan 21 at 13:00








  • 1




    $begingroup$
    @user1942348 You can manipulate the function $g$ to ensure convergence. For example $g(x) = (3x - 1)^{1/3}$ has $g'(1.53) < 1$, so you could try that version of $g$ instead
    $endgroup$
    – caverac
    Jan 21 at 13:05


















  • $begingroup$
    Thank you. Please explain the line "convergence = fabs(d) < 1 ? 't' : 'f';" Also, if g'(x1) >=1, please, I want to get a message of non-convergence
    $endgroup$
    – user1942348
    Jan 21 at 12:30








  • 1




    $begingroup$
    @user1942348 That is short for if (fabs(d)) < 1 then convergence = true, else convergence = false. You can modify that bit at your convenience
    $endgroup$
    – caverac
    Jan 21 at 12:41










  • $begingroup$
    This code works good for |x|<1 only
    $endgroup$
    – user1942348
    Jan 21 at 12:48










  • $begingroup$
    There is a root 1.5319 also. How to catch that root
    $endgroup$
    – user1942348
    Jan 21 at 13:00








  • 1




    $begingroup$
    @user1942348 You can manipulate the function $g$ to ensure convergence. For example $g(x) = (3x - 1)^{1/3}$ has $g'(1.53) < 1$, so you could try that version of $g$ instead
    $endgroup$
    – caverac
    Jan 21 at 13:05
















$begingroup$
Thank you. Please explain the line "convergence = fabs(d) < 1 ? 't' : 'f';" Also, if g'(x1) >=1, please, I want to get a message of non-convergence
$endgroup$
– user1942348
Jan 21 at 12:30






$begingroup$
Thank you. Please explain the line "convergence = fabs(d) < 1 ? 't' : 'f';" Also, if g'(x1) >=1, please, I want to get a message of non-convergence
$endgroup$
– user1942348
Jan 21 at 12:30






1




1




$begingroup$
@user1942348 That is short for if (fabs(d)) < 1 then convergence = true, else convergence = false. You can modify that bit at your convenience
$endgroup$
– caverac
Jan 21 at 12:41




$begingroup$
@user1942348 That is short for if (fabs(d)) < 1 then convergence = true, else convergence = false. You can modify that bit at your convenience
$endgroup$
– caverac
Jan 21 at 12:41












$begingroup$
This code works good for |x|<1 only
$endgroup$
– user1942348
Jan 21 at 12:48




$begingroup$
This code works good for |x|<1 only
$endgroup$
– user1942348
Jan 21 at 12:48












$begingroup$
There is a root 1.5319 also. How to catch that root
$endgroup$
– user1942348
Jan 21 at 13:00






$begingroup$
There is a root 1.5319 also. How to catch that root
$endgroup$
– user1942348
Jan 21 at 13:00






1




1




$begingroup$
@user1942348 You can manipulate the function $g$ to ensure convergence. For example $g(x) = (3x - 1)^{1/3}$ has $g'(1.53) < 1$, so you could try that version of $g$ instead
$endgroup$
– caverac
Jan 21 at 13:05




$begingroup$
@user1942348 You can manipulate the function $g$ to ensure convergence. For example $g(x) = (3x - 1)^{1/3}$ has $g'(1.53) < 1$, so you could try that version of $g$ instead
$endgroup$
– caverac
Jan 21 at 13:05


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081771%2fwrite-a-c-program-to-find-a-root-of-x3-3x-1-0-by-fixed-point-iteration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith