Demonstrate that these two Pell's equations have no integer solutions












5












$begingroup$


I would like to demonstrate that the following four Pell's equations have no integer solutions:



$x^2-82y^2=pm2$



$x^2-82y^2=pm3$



I do realise that such problems are often solved by algebraic manipulations, reducing modulo prime numbers, and arriving at some contradiction. After some blind trial and error fumbling in the dark with the above mentioned method, I have decided to consult the community.



All help or input would, as always, be highly appreciated.










share|cite|improve this question









$endgroup$

















    5












    $begingroup$


    I would like to demonstrate that the following four Pell's equations have no integer solutions:



    $x^2-82y^2=pm2$



    $x^2-82y^2=pm3$



    I do realise that such problems are often solved by algebraic manipulations, reducing modulo prime numbers, and arriving at some contradiction. After some blind trial and error fumbling in the dark with the above mentioned method, I have decided to consult the community.



    All help or input would, as always, be highly appreciated.










    share|cite|improve this question









    $endgroup$















      5












      5








      5


      2



      $begingroup$


      I would like to demonstrate that the following four Pell's equations have no integer solutions:



      $x^2-82y^2=pm2$



      $x^2-82y^2=pm3$



      I do realise that such problems are often solved by algebraic manipulations, reducing modulo prime numbers, and arriving at some contradiction. After some blind trial and error fumbling in the dark with the above mentioned method, I have decided to consult the community.



      All help or input would, as always, be highly appreciated.










      share|cite|improve this question









      $endgroup$




      I would like to demonstrate that the following four Pell's equations have no integer solutions:



      $x^2-82y^2=pm2$



      $x^2-82y^2=pm3$



      I do realise that such problems are often solved by algebraic manipulations, reducing modulo prime numbers, and arriving at some contradiction. After some blind trial and error fumbling in the dark with the above mentioned method, I have decided to consult the community.



      All help or input would, as always, be highly appreciated.







      number-theory elementary-number-theory pell-type-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 31 at 22:40









      Heinrich WagnerHeinrich Wagner

      457211




      457211






















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          The second one is easy
          $$x^2 - 82y^2 = pm3 Rightarrow x^2 equiv pm3 pmod{41}$$
          but according to Euler's criterion
          $$left(frac{pm3}{41}right) equiv left(pm3right)^{frac{41-1}{2}} pmod{41}$$
          and $$left(pm3right)^{20} equiv -1 pmod{41}$$
          as a result, there is no such $x$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            There's also no solutions modulo $8$ to $x^2-82y^2=pm 3$.
            $endgroup$
            – Mike Bennett
            Feb 1 at 16:41





















          4












          $begingroup$

          This is an example of a rather more general phenomenon. The continued fraction expansion of $sqrt{t^2+1}$ is just $[t,overline{2t}]$ and hence every convergent $p_i/q_i$ to $sqrt{t^2+1}$ has the property that
          $$
          p_i^2- (t^2+1) q_i^2 = pm 1.
          $$

          If we have $x^2-(t^2+1)y^2=k$ for a given integer $k$ and some integer $x$ with $y neq 0$, then
          $$
          left| sqrt{t^2+1} - frac{x}{y} right| = frac{|k|}{y^2 left|sqrt{t^2+1} + frac{x}{y} right|}
          $$

          and so $x/y$ is a convergent to $sqrt{t^2+1}$ provided, roughly, $|k| leq t$. It follows that the form $x^2-(t^2+1)y^2$ does not represent any non-square integers $k$ with $1< |k| < t$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Good. I know few places that state clearly that primitively represented values (of $x^2 - n y^2$) up to $sqrt n$ occur as convergents for it. A slightly more general version is in L. E. Dickson, Introduction to Number Theory, about 1929. Theorem 85, attributed to Lagrange.
            $endgroup$
            – Will Jagy
            Feb 1 at 2:27



















          3












          $begingroup$

          Recommend learning the following method for the continued fraction of $sqrt n.$
          All small numbers $|k| < sqrt n$ that have a primitive representation as $x^2 - n y^2$ show up as $p^2 - n q^2,$ where $frac{p}{q}$ is a convergent for $sqrt n.$ As you can see, the only small represented numbers are $pm 1.$ See Theorem 5.1 in KCONRAD



          Method described by Prof. Lubin at Continued fraction of $sqrt{67} - 4$



          $$ sqrt { 82} = 9 + frac{ sqrt {82} - 9 }{ 1 } $$
          $$ frac{ 1 }{ sqrt {82} - 9 } = frac{ sqrt {82} + 9 }{1 } = 18 + frac{ sqrt {82} - 9 }{1 } $$



          Simple continued fraction tableau:
          $$
          begin{array}{cccccccc}
          & & 9 & & 18 & & 18 & \
          \
          frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 9 }{ 1 } & & frac{ 163 }{ 18 } \
          \
          & 1 & & -1 & & 1
          end{array}
          $$



          $$
          begin{array}{cccc}
          frac{ 1 }{ 0 } & 1^2 - 82 cdot 0^2 = 1 & mbox{digit} & 9 \
          frac{ 9 }{ 1 } & 9^2 - 82 cdot 1^2 = -1 & mbox{digit} & 18 \
          frac{ 163 }{ 18 } & 163^2 - 82 cdot 18^2 = 1 & mbox{digit} & 18 \
          end{array}
          $$



          ========================================================



          a different example:



          $$ sqrt { 229} = 15 + frac{ sqrt {229} - 15 }{ 1 } $$
          $$ frac{ 1 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{4 } = 7 + frac{ sqrt {229} - 13 }{4 } $$
          $$ frac{ 4 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{15 } = 1 + frac{ sqrt {229} - 2 }{15 } $$
          $$ frac{ 15 }{ sqrt {229} - 2 } = frac{ sqrt {229} + 2 }{15 } = 1 + frac{ sqrt {229} - 13 }{15 } $$
          $$ frac{ 15 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{4 } = 7 + frac{ sqrt {229} - 15 }{4 } $$
          $$ frac{ 4 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{1 } = 30 + frac{ sqrt {229} - 15 }{1 } $$



          Simple continued fraction tableau:
          $$
          begin{array}{cccccccccccccccccccccccc}
          & & 15 & & 7 & & 1 & & 1 & & 7 & & 30 & & 7 & & 1 & & 1 & & 7 & & 30 & \
          \
          frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 15 }{ 1 } & & frac{ 106 }{ 7 } & & frac{ 121 }{ 8 } & & frac{ 227 }{ 15 } & & frac{ 1710 }{ 113 } & & frac{ 51527 }{ 3405 } & & frac{ 362399 }{ 23948 } & & frac{ 413926 }{ 27353 } & & frac{ 776325 }{ 51301 } & & frac{ 5848201 }{ 386460 } \
          \
          & 1 & & -4 & & 15 & & -15 & & 4 & & -1 & & 4 & & -15 & & 15 & & -4 & & 1
          end{array}
          $$



          $$
          begin{array}{cccc}
          frac{ 1 }{ 0 } & 1^2 - 229 cdot 0^2 = 1 & mbox{digit} & 15 \
          frac{ 15 }{ 1 } & 15^2 - 229 cdot 1^2 = -4 & mbox{digit} & 7 \
          frac{ 106 }{ 7 } & 106^2 - 229 cdot 7^2 = 15 & mbox{digit} & 1 \
          frac{ 121 }{ 8 } & 121^2 - 229 cdot 8^2 = -15 & mbox{digit} & 1 \
          frac{ 227 }{ 15 } & 227^2 - 229 cdot 15^2 = 4 & mbox{digit} & 7 \
          frac{ 1710 }{ 113 } & 1710^2 - 229 cdot 113^2 = -1 & mbox{digit} & 30 \
          frac{ 51527 }{ 3405 } & 51527^2 - 229 cdot 3405^2 = 4 & mbox{digit} & 7 \
          frac{ 362399 }{ 23948 } & 362399^2 - 229 cdot 23948^2 = -15 & mbox{digit} & 1 \
          frac{ 413926 }{ 27353 } & 413926^2 - 229 cdot 27353^2 = 15 & mbox{digit} & 1 \
          frac{ 776325 }{ 51301 } & 776325^2 - 229 cdot 51301^2 = -4 & mbox{digit} & 7 \
          frac{ 5848201 }{ 386460 } & 5848201^2 - 229 cdot 386460^2 = 1 & mbox{digit} & 30 \
          end{array}
          $$



          ====================================



          $$ sqrt { 106} = 10 + frac{ sqrt {106} - 10 }{ 1 } $$
          $$ frac{ 1 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{6 } = 3 + frac{ sqrt {106} - 8 }{6 } $$
          $$ frac{ 6 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{7 } = 2 + frac{ sqrt {106} - 6 }{7 } $$
          $$ frac{ 7 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{10 } = 1 + frac{ sqrt {106} - 4 }{10 } $$
          $$ frac{ 10 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{9 } = 1 + frac{ sqrt {106} - 5 }{9 } $$
          $$ frac{ 9 }{ sqrt {106} - 5 } = frac{ sqrt {106} + 5 }{9 } = 1 + frac{ sqrt {106} - 4 }{9 } $$
          $$ frac{ 9 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{10 } = 1 + frac{ sqrt {106} - 6 }{10 } $$
          $$ frac{ 10 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{7 } = 2 + frac{ sqrt {106} - 8 }{7 } $$
          $$ frac{ 7 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{6 } = 3 + frac{ sqrt {106} - 10 }{6 } $$
          $$ frac{ 6 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{1 } = 20 + frac{ sqrt {106} - 10 }{1 } $$



          Simple continued fraction tableau:
          $$
          begin{array}{cccccccccccccccccccccccccccccccccccccccc}
          & & 10 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & \
          \
          frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 10 }{ 1 } & & frac{ 31 }{ 3 } & & frac{ 72 }{ 7 } & & frac{ 103 }{ 10 } & & frac{ 175 }{ 17 } & & frac{ 278 }{ 27 } & & frac{ 453 }{ 44 } & & frac{ 1184 }{ 115 } & & frac{ 4005 }{ 389 } & & frac{ 81284 }{ 7895 } & & frac{ 247857 }{ 24074 } & & frac{ 576998 }{ 56043 } & & frac{ 824855 }{ 80117 } & & frac{ 1401853 }{ 136160 } & & frac{ 2226708 }{ 216277 } & & frac{ 3628561 }{ 352437 } & & frac{ 9483830 }{ 921151 } & & frac{ 32080051 }{ 3115890 } \
          \
          & 1 & & -6 & & 7 & & -10 & & 9 & & -9 & & 10 & & -7 & & 6 & & -1 & & 6 & & -7 & & 10 & & -9 & & 9 & & -10 & & 7 & & -6 & & 1
          end{array}
          $$



          $$
          begin{array}{cccc}
          frac{ 1 }{ 0 } & 1^2 - 106 cdot 0^2 = 1 & mbox{digit} & 10 \
          frac{ 10 }{ 1 } & 10^2 - 106 cdot 1^2 = -6 & mbox{digit} & 3 \
          frac{ 31 }{ 3 } & 31^2 - 106 cdot 3^2 = 7 & mbox{digit} & 2 \
          frac{ 72 }{ 7 } & 72^2 - 106 cdot 7^2 = -10 & mbox{digit} & 1 \
          frac{ 103 }{ 10 } & 103^2 - 106 cdot 10^2 = 9 & mbox{digit} & 1 \
          frac{ 175 }{ 17 } & 175^2 - 106 cdot 17^2 = -9 & mbox{digit} & 1 \
          frac{ 278 }{ 27 } & 278^2 - 106 cdot 27^2 = 10 & mbox{digit} & 1 \
          frac{ 453 }{ 44 } & 453^2 - 106 cdot 44^2 = -7 & mbox{digit} & 2 \
          frac{ 1184 }{ 115 } & 1184^2 - 106 cdot 115^2 = 6 & mbox{digit} & 3 \
          frac{ 4005 }{ 389 } & 4005^2 - 106 cdot 389^2 = -1 & mbox{digit} & 20 \
          frac{ 81284 }{ 7895 } & 81284^2 - 106 cdot 7895^2 = 6 & mbox{digit} & 3 \
          frac{ 247857 }{ 24074 } & 247857^2 - 106 cdot 24074^2 = -7 & mbox{digit} & 2 \
          frac{ 576998 }{ 56043 } & 576998^2 - 106 cdot 56043^2 = 10 & mbox{digit} & 1 \
          frac{ 824855 }{ 80117 } & 824855^2 - 106 cdot 80117^2 = -9 & mbox{digit} & 1 \
          frac{ 1401853 }{ 136160 } & 1401853^2 - 106 cdot 136160^2 = 9 & mbox{digit} & 1 \
          frac{ 2226708 }{ 216277 } & 2226708^2 - 106 cdot 216277^2 = -10 & mbox{digit} & 1 \
          frac{ 3628561 }{ 352437 } & 3628561^2 - 106 cdot 352437^2 = 7 & mbox{digit} & 2 \
          frac{ 9483830 }{ 921151 } & 9483830^2 - 106 cdot 921151^2 = -6 & mbox{digit} & 3 \
          frac{ 32080051 }{ 3115890 } & 32080051^2 - 106 cdot 3115890^2 = 1 & mbox{digit} & 20 \
          end{array}
          $$






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095590%2fdemonstrate-that-these-two-pells-equations-have-no-integer-solutions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            7












            $begingroup$

            The second one is easy
            $$x^2 - 82y^2 = pm3 Rightarrow x^2 equiv pm3 pmod{41}$$
            but according to Euler's criterion
            $$left(frac{pm3}{41}right) equiv left(pm3right)^{frac{41-1}{2}} pmod{41}$$
            and $$left(pm3right)^{20} equiv -1 pmod{41}$$
            as a result, there is no such $x$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              There's also no solutions modulo $8$ to $x^2-82y^2=pm 3$.
              $endgroup$
              – Mike Bennett
              Feb 1 at 16:41


















            7












            $begingroup$

            The second one is easy
            $$x^2 - 82y^2 = pm3 Rightarrow x^2 equiv pm3 pmod{41}$$
            but according to Euler's criterion
            $$left(frac{pm3}{41}right) equiv left(pm3right)^{frac{41-1}{2}} pmod{41}$$
            and $$left(pm3right)^{20} equiv -1 pmod{41}$$
            as a result, there is no such $x$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              There's also no solutions modulo $8$ to $x^2-82y^2=pm 3$.
              $endgroup$
              – Mike Bennett
              Feb 1 at 16:41
















            7












            7








            7





            $begingroup$

            The second one is easy
            $$x^2 - 82y^2 = pm3 Rightarrow x^2 equiv pm3 pmod{41}$$
            but according to Euler's criterion
            $$left(frac{pm3}{41}right) equiv left(pm3right)^{frac{41-1}{2}} pmod{41}$$
            and $$left(pm3right)^{20} equiv -1 pmod{41}$$
            as a result, there is no such $x$.






            share|cite|improve this answer









            $endgroup$



            The second one is easy
            $$x^2 - 82y^2 = pm3 Rightarrow x^2 equiv pm3 pmod{41}$$
            but according to Euler's criterion
            $$left(frac{pm3}{41}right) equiv left(pm3right)^{frac{41-1}{2}} pmod{41}$$
            and $$left(pm3right)^{20} equiv -1 pmod{41}$$
            as a result, there is no such $x$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 31 at 23:03









            rtybasertybase

            11.5k31534




            11.5k31534












            • $begingroup$
              There's also no solutions modulo $8$ to $x^2-82y^2=pm 3$.
              $endgroup$
              – Mike Bennett
              Feb 1 at 16:41




















            • $begingroup$
              There's also no solutions modulo $8$ to $x^2-82y^2=pm 3$.
              $endgroup$
              – Mike Bennett
              Feb 1 at 16:41


















            $begingroup$
            There's also no solutions modulo $8$ to $x^2-82y^2=pm 3$.
            $endgroup$
            – Mike Bennett
            Feb 1 at 16:41






            $begingroup$
            There's also no solutions modulo $8$ to $x^2-82y^2=pm 3$.
            $endgroup$
            – Mike Bennett
            Feb 1 at 16:41













            4












            $begingroup$

            This is an example of a rather more general phenomenon. The continued fraction expansion of $sqrt{t^2+1}$ is just $[t,overline{2t}]$ and hence every convergent $p_i/q_i$ to $sqrt{t^2+1}$ has the property that
            $$
            p_i^2- (t^2+1) q_i^2 = pm 1.
            $$

            If we have $x^2-(t^2+1)y^2=k$ for a given integer $k$ and some integer $x$ with $y neq 0$, then
            $$
            left| sqrt{t^2+1} - frac{x}{y} right| = frac{|k|}{y^2 left|sqrt{t^2+1} + frac{x}{y} right|}
            $$

            and so $x/y$ is a convergent to $sqrt{t^2+1}$ provided, roughly, $|k| leq t$. It follows that the form $x^2-(t^2+1)y^2$ does not represent any non-square integers $k$ with $1< |k| < t$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Good. I know few places that state clearly that primitively represented values (of $x^2 - n y^2$) up to $sqrt n$ occur as convergents for it. A slightly more general version is in L. E. Dickson, Introduction to Number Theory, about 1929. Theorem 85, attributed to Lagrange.
              $endgroup$
              – Will Jagy
              Feb 1 at 2:27
















            4












            $begingroup$

            This is an example of a rather more general phenomenon. The continued fraction expansion of $sqrt{t^2+1}$ is just $[t,overline{2t}]$ and hence every convergent $p_i/q_i$ to $sqrt{t^2+1}$ has the property that
            $$
            p_i^2- (t^2+1) q_i^2 = pm 1.
            $$

            If we have $x^2-(t^2+1)y^2=k$ for a given integer $k$ and some integer $x$ with $y neq 0$, then
            $$
            left| sqrt{t^2+1} - frac{x}{y} right| = frac{|k|}{y^2 left|sqrt{t^2+1} + frac{x}{y} right|}
            $$

            and so $x/y$ is a convergent to $sqrt{t^2+1}$ provided, roughly, $|k| leq t$. It follows that the form $x^2-(t^2+1)y^2$ does not represent any non-square integers $k$ with $1< |k| < t$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Good. I know few places that state clearly that primitively represented values (of $x^2 - n y^2$) up to $sqrt n$ occur as convergents for it. A slightly more general version is in L. E. Dickson, Introduction to Number Theory, about 1929. Theorem 85, attributed to Lagrange.
              $endgroup$
              – Will Jagy
              Feb 1 at 2:27














            4












            4








            4





            $begingroup$

            This is an example of a rather more general phenomenon. The continued fraction expansion of $sqrt{t^2+1}$ is just $[t,overline{2t}]$ and hence every convergent $p_i/q_i$ to $sqrt{t^2+1}$ has the property that
            $$
            p_i^2- (t^2+1) q_i^2 = pm 1.
            $$

            If we have $x^2-(t^2+1)y^2=k$ for a given integer $k$ and some integer $x$ with $y neq 0$, then
            $$
            left| sqrt{t^2+1} - frac{x}{y} right| = frac{|k|}{y^2 left|sqrt{t^2+1} + frac{x}{y} right|}
            $$

            and so $x/y$ is a convergent to $sqrt{t^2+1}$ provided, roughly, $|k| leq t$. It follows that the form $x^2-(t^2+1)y^2$ does not represent any non-square integers $k$ with $1< |k| < t$.






            share|cite|improve this answer









            $endgroup$



            This is an example of a rather more general phenomenon. The continued fraction expansion of $sqrt{t^2+1}$ is just $[t,overline{2t}]$ and hence every convergent $p_i/q_i$ to $sqrt{t^2+1}$ has the property that
            $$
            p_i^2- (t^2+1) q_i^2 = pm 1.
            $$

            If we have $x^2-(t^2+1)y^2=k$ for a given integer $k$ and some integer $x$ with $y neq 0$, then
            $$
            left| sqrt{t^2+1} - frac{x}{y} right| = frac{|k|}{y^2 left|sqrt{t^2+1} + frac{x}{y} right|}
            $$

            and so $x/y$ is a convergent to $sqrt{t^2+1}$ provided, roughly, $|k| leq t$. It follows that the form $x^2-(t^2+1)y^2$ does not represent any non-square integers $k$ with $1< |k| < t$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 1 at 2:09









            Mike BennettMike Bennett

            2,41978




            2,41978












            • $begingroup$
              Good. I know few places that state clearly that primitively represented values (of $x^2 - n y^2$) up to $sqrt n$ occur as convergents for it. A slightly more general version is in L. E. Dickson, Introduction to Number Theory, about 1929. Theorem 85, attributed to Lagrange.
              $endgroup$
              – Will Jagy
              Feb 1 at 2:27


















            • $begingroup$
              Good. I know few places that state clearly that primitively represented values (of $x^2 - n y^2$) up to $sqrt n$ occur as convergents for it. A slightly more general version is in L. E. Dickson, Introduction to Number Theory, about 1929. Theorem 85, attributed to Lagrange.
              $endgroup$
              – Will Jagy
              Feb 1 at 2:27
















            $begingroup$
            Good. I know few places that state clearly that primitively represented values (of $x^2 - n y^2$) up to $sqrt n$ occur as convergents for it. A slightly more general version is in L. E. Dickson, Introduction to Number Theory, about 1929. Theorem 85, attributed to Lagrange.
            $endgroup$
            – Will Jagy
            Feb 1 at 2:27




            $begingroup$
            Good. I know few places that state clearly that primitively represented values (of $x^2 - n y^2$) up to $sqrt n$ occur as convergents for it. A slightly more general version is in L. E. Dickson, Introduction to Number Theory, about 1929. Theorem 85, attributed to Lagrange.
            $endgroup$
            – Will Jagy
            Feb 1 at 2:27











            3












            $begingroup$

            Recommend learning the following method for the continued fraction of $sqrt n.$
            All small numbers $|k| < sqrt n$ that have a primitive representation as $x^2 - n y^2$ show up as $p^2 - n q^2,$ where $frac{p}{q}$ is a convergent for $sqrt n.$ As you can see, the only small represented numbers are $pm 1.$ See Theorem 5.1 in KCONRAD



            Method described by Prof. Lubin at Continued fraction of $sqrt{67} - 4$



            $$ sqrt { 82} = 9 + frac{ sqrt {82} - 9 }{ 1 } $$
            $$ frac{ 1 }{ sqrt {82} - 9 } = frac{ sqrt {82} + 9 }{1 } = 18 + frac{ sqrt {82} - 9 }{1 } $$



            Simple continued fraction tableau:
            $$
            begin{array}{cccccccc}
            & & 9 & & 18 & & 18 & \
            \
            frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 9 }{ 1 } & & frac{ 163 }{ 18 } \
            \
            & 1 & & -1 & & 1
            end{array}
            $$



            $$
            begin{array}{cccc}
            frac{ 1 }{ 0 } & 1^2 - 82 cdot 0^2 = 1 & mbox{digit} & 9 \
            frac{ 9 }{ 1 } & 9^2 - 82 cdot 1^2 = -1 & mbox{digit} & 18 \
            frac{ 163 }{ 18 } & 163^2 - 82 cdot 18^2 = 1 & mbox{digit} & 18 \
            end{array}
            $$



            ========================================================



            a different example:



            $$ sqrt { 229} = 15 + frac{ sqrt {229} - 15 }{ 1 } $$
            $$ frac{ 1 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{4 } = 7 + frac{ sqrt {229} - 13 }{4 } $$
            $$ frac{ 4 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{15 } = 1 + frac{ sqrt {229} - 2 }{15 } $$
            $$ frac{ 15 }{ sqrt {229} - 2 } = frac{ sqrt {229} + 2 }{15 } = 1 + frac{ sqrt {229} - 13 }{15 } $$
            $$ frac{ 15 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{4 } = 7 + frac{ sqrt {229} - 15 }{4 } $$
            $$ frac{ 4 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{1 } = 30 + frac{ sqrt {229} - 15 }{1 } $$



            Simple continued fraction tableau:
            $$
            begin{array}{cccccccccccccccccccccccc}
            & & 15 & & 7 & & 1 & & 1 & & 7 & & 30 & & 7 & & 1 & & 1 & & 7 & & 30 & \
            \
            frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 15 }{ 1 } & & frac{ 106 }{ 7 } & & frac{ 121 }{ 8 } & & frac{ 227 }{ 15 } & & frac{ 1710 }{ 113 } & & frac{ 51527 }{ 3405 } & & frac{ 362399 }{ 23948 } & & frac{ 413926 }{ 27353 } & & frac{ 776325 }{ 51301 } & & frac{ 5848201 }{ 386460 } \
            \
            & 1 & & -4 & & 15 & & -15 & & 4 & & -1 & & 4 & & -15 & & 15 & & -4 & & 1
            end{array}
            $$



            $$
            begin{array}{cccc}
            frac{ 1 }{ 0 } & 1^2 - 229 cdot 0^2 = 1 & mbox{digit} & 15 \
            frac{ 15 }{ 1 } & 15^2 - 229 cdot 1^2 = -4 & mbox{digit} & 7 \
            frac{ 106 }{ 7 } & 106^2 - 229 cdot 7^2 = 15 & mbox{digit} & 1 \
            frac{ 121 }{ 8 } & 121^2 - 229 cdot 8^2 = -15 & mbox{digit} & 1 \
            frac{ 227 }{ 15 } & 227^2 - 229 cdot 15^2 = 4 & mbox{digit} & 7 \
            frac{ 1710 }{ 113 } & 1710^2 - 229 cdot 113^2 = -1 & mbox{digit} & 30 \
            frac{ 51527 }{ 3405 } & 51527^2 - 229 cdot 3405^2 = 4 & mbox{digit} & 7 \
            frac{ 362399 }{ 23948 } & 362399^2 - 229 cdot 23948^2 = -15 & mbox{digit} & 1 \
            frac{ 413926 }{ 27353 } & 413926^2 - 229 cdot 27353^2 = 15 & mbox{digit} & 1 \
            frac{ 776325 }{ 51301 } & 776325^2 - 229 cdot 51301^2 = -4 & mbox{digit} & 7 \
            frac{ 5848201 }{ 386460 } & 5848201^2 - 229 cdot 386460^2 = 1 & mbox{digit} & 30 \
            end{array}
            $$



            ====================================



            $$ sqrt { 106} = 10 + frac{ sqrt {106} - 10 }{ 1 } $$
            $$ frac{ 1 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{6 } = 3 + frac{ sqrt {106} - 8 }{6 } $$
            $$ frac{ 6 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{7 } = 2 + frac{ sqrt {106} - 6 }{7 } $$
            $$ frac{ 7 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{10 } = 1 + frac{ sqrt {106} - 4 }{10 } $$
            $$ frac{ 10 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{9 } = 1 + frac{ sqrt {106} - 5 }{9 } $$
            $$ frac{ 9 }{ sqrt {106} - 5 } = frac{ sqrt {106} + 5 }{9 } = 1 + frac{ sqrt {106} - 4 }{9 } $$
            $$ frac{ 9 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{10 } = 1 + frac{ sqrt {106} - 6 }{10 } $$
            $$ frac{ 10 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{7 } = 2 + frac{ sqrt {106} - 8 }{7 } $$
            $$ frac{ 7 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{6 } = 3 + frac{ sqrt {106} - 10 }{6 } $$
            $$ frac{ 6 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{1 } = 20 + frac{ sqrt {106} - 10 }{1 } $$



            Simple continued fraction tableau:
            $$
            begin{array}{cccccccccccccccccccccccccccccccccccccccc}
            & & 10 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & \
            \
            frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 10 }{ 1 } & & frac{ 31 }{ 3 } & & frac{ 72 }{ 7 } & & frac{ 103 }{ 10 } & & frac{ 175 }{ 17 } & & frac{ 278 }{ 27 } & & frac{ 453 }{ 44 } & & frac{ 1184 }{ 115 } & & frac{ 4005 }{ 389 } & & frac{ 81284 }{ 7895 } & & frac{ 247857 }{ 24074 } & & frac{ 576998 }{ 56043 } & & frac{ 824855 }{ 80117 } & & frac{ 1401853 }{ 136160 } & & frac{ 2226708 }{ 216277 } & & frac{ 3628561 }{ 352437 } & & frac{ 9483830 }{ 921151 } & & frac{ 32080051 }{ 3115890 } \
            \
            & 1 & & -6 & & 7 & & -10 & & 9 & & -9 & & 10 & & -7 & & 6 & & -1 & & 6 & & -7 & & 10 & & -9 & & 9 & & -10 & & 7 & & -6 & & 1
            end{array}
            $$



            $$
            begin{array}{cccc}
            frac{ 1 }{ 0 } & 1^2 - 106 cdot 0^2 = 1 & mbox{digit} & 10 \
            frac{ 10 }{ 1 } & 10^2 - 106 cdot 1^2 = -6 & mbox{digit} & 3 \
            frac{ 31 }{ 3 } & 31^2 - 106 cdot 3^2 = 7 & mbox{digit} & 2 \
            frac{ 72 }{ 7 } & 72^2 - 106 cdot 7^2 = -10 & mbox{digit} & 1 \
            frac{ 103 }{ 10 } & 103^2 - 106 cdot 10^2 = 9 & mbox{digit} & 1 \
            frac{ 175 }{ 17 } & 175^2 - 106 cdot 17^2 = -9 & mbox{digit} & 1 \
            frac{ 278 }{ 27 } & 278^2 - 106 cdot 27^2 = 10 & mbox{digit} & 1 \
            frac{ 453 }{ 44 } & 453^2 - 106 cdot 44^2 = -7 & mbox{digit} & 2 \
            frac{ 1184 }{ 115 } & 1184^2 - 106 cdot 115^2 = 6 & mbox{digit} & 3 \
            frac{ 4005 }{ 389 } & 4005^2 - 106 cdot 389^2 = -1 & mbox{digit} & 20 \
            frac{ 81284 }{ 7895 } & 81284^2 - 106 cdot 7895^2 = 6 & mbox{digit} & 3 \
            frac{ 247857 }{ 24074 } & 247857^2 - 106 cdot 24074^2 = -7 & mbox{digit} & 2 \
            frac{ 576998 }{ 56043 } & 576998^2 - 106 cdot 56043^2 = 10 & mbox{digit} & 1 \
            frac{ 824855 }{ 80117 } & 824855^2 - 106 cdot 80117^2 = -9 & mbox{digit} & 1 \
            frac{ 1401853 }{ 136160 } & 1401853^2 - 106 cdot 136160^2 = 9 & mbox{digit} & 1 \
            frac{ 2226708 }{ 216277 } & 2226708^2 - 106 cdot 216277^2 = -10 & mbox{digit} & 1 \
            frac{ 3628561 }{ 352437 } & 3628561^2 - 106 cdot 352437^2 = 7 & mbox{digit} & 2 \
            frac{ 9483830 }{ 921151 } & 9483830^2 - 106 cdot 921151^2 = -6 & mbox{digit} & 3 \
            frac{ 32080051 }{ 3115890 } & 32080051^2 - 106 cdot 3115890^2 = 1 & mbox{digit} & 20 \
            end{array}
            $$






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              Recommend learning the following method for the continued fraction of $sqrt n.$
              All small numbers $|k| < sqrt n$ that have a primitive representation as $x^2 - n y^2$ show up as $p^2 - n q^2,$ where $frac{p}{q}$ is a convergent for $sqrt n.$ As you can see, the only small represented numbers are $pm 1.$ See Theorem 5.1 in KCONRAD



              Method described by Prof. Lubin at Continued fraction of $sqrt{67} - 4$



              $$ sqrt { 82} = 9 + frac{ sqrt {82} - 9 }{ 1 } $$
              $$ frac{ 1 }{ sqrt {82} - 9 } = frac{ sqrt {82} + 9 }{1 } = 18 + frac{ sqrt {82} - 9 }{1 } $$



              Simple continued fraction tableau:
              $$
              begin{array}{cccccccc}
              & & 9 & & 18 & & 18 & \
              \
              frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 9 }{ 1 } & & frac{ 163 }{ 18 } \
              \
              & 1 & & -1 & & 1
              end{array}
              $$



              $$
              begin{array}{cccc}
              frac{ 1 }{ 0 } & 1^2 - 82 cdot 0^2 = 1 & mbox{digit} & 9 \
              frac{ 9 }{ 1 } & 9^2 - 82 cdot 1^2 = -1 & mbox{digit} & 18 \
              frac{ 163 }{ 18 } & 163^2 - 82 cdot 18^2 = 1 & mbox{digit} & 18 \
              end{array}
              $$



              ========================================================



              a different example:



              $$ sqrt { 229} = 15 + frac{ sqrt {229} - 15 }{ 1 } $$
              $$ frac{ 1 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{4 } = 7 + frac{ sqrt {229} - 13 }{4 } $$
              $$ frac{ 4 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{15 } = 1 + frac{ sqrt {229} - 2 }{15 } $$
              $$ frac{ 15 }{ sqrt {229} - 2 } = frac{ sqrt {229} + 2 }{15 } = 1 + frac{ sqrt {229} - 13 }{15 } $$
              $$ frac{ 15 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{4 } = 7 + frac{ sqrt {229} - 15 }{4 } $$
              $$ frac{ 4 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{1 } = 30 + frac{ sqrt {229} - 15 }{1 } $$



              Simple continued fraction tableau:
              $$
              begin{array}{cccccccccccccccccccccccc}
              & & 15 & & 7 & & 1 & & 1 & & 7 & & 30 & & 7 & & 1 & & 1 & & 7 & & 30 & \
              \
              frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 15 }{ 1 } & & frac{ 106 }{ 7 } & & frac{ 121 }{ 8 } & & frac{ 227 }{ 15 } & & frac{ 1710 }{ 113 } & & frac{ 51527 }{ 3405 } & & frac{ 362399 }{ 23948 } & & frac{ 413926 }{ 27353 } & & frac{ 776325 }{ 51301 } & & frac{ 5848201 }{ 386460 } \
              \
              & 1 & & -4 & & 15 & & -15 & & 4 & & -1 & & 4 & & -15 & & 15 & & -4 & & 1
              end{array}
              $$



              $$
              begin{array}{cccc}
              frac{ 1 }{ 0 } & 1^2 - 229 cdot 0^2 = 1 & mbox{digit} & 15 \
              frac{ 15 }{ 1 } & 15^2 - 229 cdot 1^2 = -4 & mbox{digit} & 7 \
              frac{ 106 }{ 7 } & 106^2 - 229 cdot 7^2 = 15 & mbox{digit} & 1 \
              frac{ 121 }{ 8 } & 121^2 - 229 cdot 8^2 = -15 & mbox{digit} & 1 \
              frac{ 227 }{ 15 } & 227^2 - 229 cdot 15^2 = 4 & mbox{digit} & 7 \
              frac{ 1710 }{ 113 } & 1710^2 - 229 cdot 113^2 = -1 & mbox{digit} & 30 \
              frac{ 51527 }{ 3405 } & 51527^2 - 229 cdot 3405^2 = 4 & mbox{digit} & 7 \
              frac{ 362399 }{ 23948 } & 362399^2 - 229 cdot 23948^2 = -15 & mbox{digit} & 1 \
              frac{ 413926 }{ 27353 } & 413926^2 - 229 cdot 27353^2 = 15 & mbox{digit} & 1 \
              frac{ 776325 }{ 51301 } & 776325^2 - 229 cdot 51301^2 = -4 & mbox{digit} & 7 \
              frac{ 5848201 }{ 386460 } & 5848201^2 - 229 cdot 386460^2 = 1 & mbox{digit} & 30 \
              end{array}
              $$



              ====================================



              $$ sqrt { 106} = 10 + frac{ sqrt {106} - 10 }{ 1 } $$
              $$ frac{ 1 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{6 } = 3 + frac{ sqrt {106} - 8 }{6 } $$
              $$ frac{ 6 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{7 } = 2 + frac{ sqrt {106} - 6 }{7 } $$
              $$ frac{ 7 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{10 } = 1 + frac{ sqrt {106} - 4 }{10 } $$
              $$ frac{ 10 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{9 } = 1 + frac{ sqrt {106} - 5 }{9 } $$
              $$ frac{ 9 }{ sqrt {106} - 5 } = frac{ sqrt {106} + 5 }{9 } = 1 + frac{ sqrt {106} - 4 }{9 } $$
              $$ frac{ 9 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{10 } = 1 + frac{ sqrt {106} - 6 }{10 } $$
              $$ frac{ 10 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{7 } = 2 + frac{ sqrt {106} - 8 }{7 } $$
              $$ frac{ 7 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{6 } = 3 + frac{ sqrt {106} - 10 }{6 } $$
              $$ frac{ 6 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{1 } = 20 + frac{ sqrt {106} - 10 }{1 } $$



              Simple continued fraction tableau:
              $$
              begin{array}{cccccccccccccccccccccccccccccccccccccccc}
              & & 10 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & \
              \
              frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 10 }{ 1 } & & frac{ 31 }{ 3 } & & frac{ 72 }{ 7 } & & frac{ 103 }{ 10 } & & frac{ 175 }{ 17 } & & frac{ 278 }{ 27 } & & frac{ 453 }{ 44 } & & frac{ 1184 }{ 115 } & & frac{ 4005 }{ 389 } & & frac{ 81284 }{ 7895 } & & frac{ 247857 }{ 24074 } & & frac{ 576998 }{ 56043 } & & frac{ 824855 }{ 80117 } & & frac{ 1401853 }{ 136160 } & & frac{ 2226708 }{ 216277 } & & frac{ 3628561 }{ 352437 } & & frac{ 9483830 }{ 921151 } & & frac{ 32080051 }{ 3115890 } \
              \
              & 1 & & -6 & & 7 & & -10 & & 9 & & -9 & & 10 & & -7 & & 6 & & -1 & & 6 & & -7 & & 10 & & -9 & & 9 & & -10 & & 7 & & -6 & & 1
              end{array}
              $$



              $$
              begin{array}{cccc}
              frac{ 1 }{ 0 } & 1^2 - 106 cdot 0^2 = 1 & mbox{digit} & 10 \
              frac{ 10 }{ 1 } & 10^2 - 106 cdot 1^2 = -6 & mbox{digit} & 3 \
              frac{ 31 }{ 3 } & 31^2 - 106 cdot 3^2 = 7 & mbox{digit} & 2 \
              frac{ 72 }{ 7 } & 72^2 - 106 cdot 7^2 = -10 & mbox{digit} & 1 \
              frac{ 103 }{ 10 } & 103^2 - 106 cdot 10^2 = 9 & mbox{digit} & 1 \
              frac{ 175 }{ 17 } & 175^2 - 106 cdot 17^2 = -9 & mbox{digit} & 1 \
              frac{ 278 }{ 27 } & 278^2 - 106 cdot 27^2 = 10 & mbox{digit} & 1 \
              frac{ 453 }{ 44 } & 453^2 - 106 cdot 44^2 = -7 & mbox{digit} & 2 \
              frac{ 1184 }{ 115 } & 1184^2 - 106 cdot 115^2 = 6 & mbox{digit} & 3 \
              frac{ 4005 }{ 389 } & 4005^2 - 106 cdot 389^2 = -1 & mbox{digit} & 20 \
              frac{ 81284 }{ 7895 } & 81284^2 - 106 cdot 7895^2 = 6 & mbox{digit} & 3 \
              frac{ 247857 }{ 24074 } & 247857^2 - 106 cdot 24074^2 = -7 & mbox{digit} & 2 \
              frac{ 576998 }{ 56043 } & 576998^2 - 106 cdot 56043^2 = 10 & mbox{digit} & 1 \
              frac{ 824855 }{ 80117 } & 824855^2 - 106 cdot 80117^2 = -9 & mbox{digit} & 1 \
              frac{ 1401853 }{ 136160 } & 1401853^2 - 106 cdot 136160^2 = 9 & mbox{digit} & 1 \
              frac{ 2226708 }{ 216277 } & 2226708^2 - 106 cdot 216277^2 = -10 & mbox{digit} & 1 \
              frac{ 3628561 }{ 352437 } & 3628561^2 - 106 cdot 352437^2 = 7 & mbox{digit} & 2 \
              frac{ 9483830 }{ 921151 } & 9483830^2 - 106 cdot 921151^2 = -6 & mbox{digit} & 3 \
              frac{ 32080051 }{ 3115890 } & 32080051^2 - 106 cdot 3115890^2 = 1 & mbox{digit} & 20 \
              end{array}
              $$






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                Recommend learning the following method for the continued fraction of $sqrt n.$
                All small numbers $|k| < sqrt n$ that have a primitive representation as $x^2 - n y^2$ show up as $p^2 - n q^2,$ where $frac{p}{q}$ is a convergent for $sqrt n.$ As you can see, the only small represented numbers are $pm 1.$ See Theorem 5.1 in KCONRAD



                Method described by Prof. Lubin at Continued fraction of $sqrt{67} - 4$



                $$ sqrt { 82} = 9 + frac{ sqrt {82} - 9 }{ 1 } $$
                $$ frac{ 1 }{ sqrt {82} - 9 } = frac{ sqrt {82} + 9 }{1 } = 18 + frac{ sqrt {82} - 9 }{1 } $$



                Simple continued fraction tableau:
                $$
                begin{array}{cccccccc}
                & & 9 & & 18 & & 18 & \
                \
                frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 9 }{ 1 } & & frac{ 163 }{ 18 } \
                \
                & 1 & & -1 & & 1
                end{array}
                $$



                $$
                begin{array}{cccc}
                frac{ 1 }{ 0 } & 1^2 - 82 cdot 0^2 = 1 & mbox{digit} & 9 \
                frac{ 9 }{ 1 } & 9^2 - 82 cdot 1^2 = -1 & mbox{digit} & 18 \
                frac{ 163 }{ 18 } & 163^2 - 82 cdot 18^2 = 1 & mbox{digit} & 18 \
                end{array}
                $$



                ========================================================



                a different example:



                $$ sqrt { 229} = 15 + frac{ sqrt {229} - 15 }{ 1 } $$
                $$ frac{ 1 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{4 } = 7 + frac{ sqrt {229} - 13 }{4 } $$
                $$ frac{ 4 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{15 } = 1 + frac{ sqrt {229} - 2 }{15 } $$
                $$ frac{ 15 }{ sqrt {229} - 2 } = frac{ sqrt {229} + 2 }{15 } = 1 + frac{ sqrt {229} - 13 }{15 } $$
                $$ frac{ 15 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{4 } = 7 + frac{ sqrt {229} - 15 }{4 } $$
                $$ frac{ 4 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{1 } = 30 + frac{ sqrt {229} - 15 }{1 } $$



                Simple continued fraction tableau:
                $$
                begin{array}{cccccccccccccccccccccccc}
                & & 15 & & 7 & & 1 & & 1 & & 7 & & 30 & & 7 & & 1 & & 1 & & 7 & & 30 & \
                \
                frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 15 }{ 1 } & & frac{ 106 }{ 7 } & & frac{ 121 }{ 8 } & & frac{ 227 }{ 15 } & & frac{ 1710 }{ 113 } & & frac{ 51527 }{ 3405 } & & frac{ 362399 }{ 23948 } & & frac{ 413926 }{ 27353 } & & frac{ 776325 }{ 51301 } & & frac{ 5848201 }{ 386460 } \
                \
                & 1 & & -4 & & 15 & & -15 & & 4 & & -1 & & 4 & & -15 & & 15 & & -4 & & 1
                end{array}
                $$



                $$
                begin{array}{cccc}
                frac{ 1 }{ 0 } & 1^2 - 229 cdot 0^2 = 1 & mbox{digit} & 15 \
                frac{ 15 }{ 1 } & 15^2 - 229 cdot 1^2 = -4 & mbox{digit} & 7 \
                frac{ 106 }{ 7 } & 106^2 - 229 cdot 7^2 = 15 & mbox{digit} & 1 \
                frac{ 121 }{ 8 } & 121^2 - 229 cdot 8^2 = -15 & mbox{digit} & 1 \
                frac{ 227 }{ 15 } & 227^2 - 229 cdot 15^2 = 4 & mbox{digit} & 7 \
                frac{ 1710 }{ 113 } & 1710^2 - 229 cdot 113^2 = -1 & mbox{digit} & 30 \
                frac{ 51527 }{ 3405 } & 51527^2 - 229 cdot 3405^2 = 4 & mbox{digit} & 7 \
                frac{ 362399 }{ 23948 } & 362399^2 - 229 cdot 23948^2 = -15 & mbox{digit} & 1 \
                frac{ 413926 }{ 27353 } & 413926^2 - 229 cdot 27353^2 = 15 & mbox{digit} & 1 \
                frac{ 776325 }{ 51301 } & 776325^2 - 229 cdot 51301^2 = -4 & mbox{digit} & 7 \
                frac{ 5848201 }{ 386460 } & 5848201^2 - 229 cdot 386460^2 = 1 & mbox{digit} & 30 \
                end{array}
                $$



                ====================================



                $$ sqrt { 106} = 10 + frac{ sqrt {106} - 10 }{ 1 } $$
                $$ frac{ 1 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{6 } = 3 + frac{ sqrt {106} - 8 }{6 } $$
                $$ frac{ 6 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{7 } = 2 + frac{ sqrt {106} - 6 }{7 } $$
                $$ frac{ 7 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{10 } = 1 + frac{ sqrt {106} - 4 }{10 } $$
                $$ frac{ 10 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{9 } = 1 + frac{ sqrt {106} - 5 }{9 } $$
                $$ frac{ 9 }{ sqrt {106} - 5 } = frac{ sqrt {106} + 5 }{9 } = 1 + frac{ sqrt {106} - 4 }{9 } $$
                $$ frac{ 9 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{10 } = 1 + frac{ sqrt {106} - 6 }{10 } $$
                $$ frac{ 10 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{7 } = 2 + frac{ sqrt {106} - 8 }{7 } $$
                $$ frac{ 7 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{6 } = 3 + frac{ sqrt {106} - 10 }{6 } $$
                $$ frac{ 6 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{1 } = 20 + frac{ sqrt {106} - 10 }{1 } $$



                Simple continued fraction tableau:
                $$
                begin{array}{cccccccccccccccccccccccccccccccccccccccc}
                & & 10 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & \
                \
                frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 10 }{ 1 } & & frac{ 31 }{ 3 } & & frac{ 72 }{ 7 } & & frac{ 103 }{ 10 } & & frac{ 175 }{ 17 } & & frac{ 278 }{ 27 } & & frac{ 453 }{ 44 } & & frac{ 1184 }{ 115 } & & frac{ 4005 }{ 389 } & & frac{ 81284 }{ 7895 } & & frac{ 247857 }{ 24074 } & & frac{ 576998 }{ 56043 } & & frac{ 824855 }{ 80117 } & & frac{ 1401853 }{ 136160 } & & frac{ 2226708 }{ 216277 } & & frac{ 3628561 }{ 352437 } & & frac{ 9483830 }{ 921151 } & & frac{ 32080051 }{ 3115890 } \
                \
                & 1 & & -6 & & 7 & & -10 & & 9 & & -9 & & 10 & & -7 & & 6 & & -1 & & 6 & & -7 & & 10 & & -9 & & 9 & & -10 & & 7 & & -6 & & 1
                end{array}
                $$



                $$
                begin{array}{cccc}
                frac{ 1 }{ 0 } & 1^2 - 106 cdot 0^2 = 1 & mbox{digit} & 10 \
                frac{ 10 }{ 1 } & 10^2 - 106 cdot 1^2 = -6 & mbox{digit} & 3 \
                frac{ 31 }{ 3 } & 31^2 - 106 cdot 3^2 = 7 & mbox{digit} & 2 \
                frac{ 72 }{ 7 } & 72^2 - 106 cdot 7^2 = -10 & mbox{digit} & 1 \
                frac{ 103 }{ 10 } & 103^2 - 106 cdot 10^2 = 9 & mbox{digit} & 1 \
                frac{ 175 }{ 17 } & 175^2 - 106 cdot 17^2 = -9 & mbox{digit} & 1 \
                frac{ 278 }{ 27 } & 278^2 - 106 cdot 27^2 = 10 & mbox{digit} & 1 \
                frac{ 453 }{ 44 } & 453^2 - 106 cdot 44^2 = -7 & mbox{digit} & 2 \
                frac{ 1184 }{ 115 } & 1184^2 - 106 cdot 115^2 = 6 & mbox{digit} & 3 \
                frac{ 4005 }{ 389 } & 4005^2 - 106 cdot 389^2 = -1 & mbox{digit} & 20 \
                frac{ 81284 }{ 7895 } & 81284^2 - 106 cdot 7895^2 = 6 & mbox{digit} & 3 \
                frac{ 247857 }{ 24074 } & 247857^2 - 106 cdot 24074^2 = -7 & mbox{digit} & 2 \
                frac{ 576998 }{ 56043 } & 576998^2 - 106 cdot 56043^2 = 10 & mbox{digit} & 1 \
                frac{ 824855 }{ 80117 } & 824855^2 - 106 cdot 80117^2 = -9 & mbox{digit} & 1 \
                frac{ 1401853 }{ 136160 } & 1401853^2 - 106 cdot 136160^2 = 9 & mbox{digit} & 1 \
                frac{ 2226708 }{ 216277 } & 2226708^2 - 106 cdot 216277^2 = -10 & mbox{digit} & 1 \
                frac{ 3628561 }{ 352437 } & 3628561^2 - 106 cdot 352437^2 = 7 & mbox{digit} & 2 \
                frac{ 9483830 }{ 921151 } & 9483830^2 - 106 cdot 921151^2 = -6 & mbox{digit} & 3 \
                frac{ 32080051 }{ 3115890 } & 32080051^2 - 106 cdot 3115890^2 = 1 & mbox{digit} & 20 \
                end{array}
                $$






                share|cite|improve this answer











                $endgroup$



                Recommend learning the following method for the continued fraction of $sqrt n.$
                All small numbers $|k| < sqrt n$ that have a primitive representation as $x^2 - n y^2$ show up as $p^2 - n q^2,$ where $frac{p}{q}$ is a convergent for $sqrt n.$ As you can see, the only small represented numbers are $pm 1.$ See Theorem 5.1 in KCONRAD



                Method described by Prof. Lubin at Continued fraction of $sqrt{67} - 4$



                $$ sqrt { 82} = 9 + frac{ sqrt {82} - 9 }{ 1 } $$
                $$ frac{ 1 }{ sqrt {82} - 9 } = frac{ sqrt {82} + 9 }{1 } = 18 + frac{ sqrt {82} - 9 }{1 } $$



                Simple continued fraction tableau:
                $$
                begin{array}{cccccccc}
                & & 9 & & 18 & & 18 & \
                \
                frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 9 }{ 1 } & & frac{ 163 }{ 18 } \
                \
                & 1 & & -1 & & 1
                end{array}
                $$



                $$
                begin{array}{cccc}
                frac{ 1 }{ 0 } & 1^2 - 82 cdot 0^2 = 1 & mbox{digit} & 9 \
                frac{ 9 }{ 1 } & 9^2 - 82 cdot 1^2 = -1 & mbox{digit} & 18 \
                frac{ 163 }{ 18 } & 163^2 - 82 cdot 18^2 = 1 & mbox{digit} & 18 \
                end{array}
                $$



                ========================================================



                a different example:



                $$ sqrt { 229} = 15 + frac{ sqrt {229} - 15 }{ 1 } $$
                $$ frac{ 1 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{4 } = 7 + frac{ sqrt {229} - 13 }{4 } $$
                $$ frac{ 4 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{15 } = 1 + frac{ sqrt {229} - 2 }{15 } $$
                $$ frac{ 15 }{ sqrt {229} - 2 } = frac{ sqrt {229} + 2 }{15 } = 1 + frac{ sqrt {229} - 13 }{15 } $$
                $$ frac{ 15 }{ sqrt {229} - 13 } = frac{ sqrt {229} + 13 }{4 } = 7 + frac{ sqrt {229} - 15 }{4 } $$
                $$ frac{ 4 }{ sqrt {229} - 15 } = frac{ sqrt {229} + 15 }{1 } = 30 + frac{ sqrt {229} - 15 }{1 } $$



                Simple continued fraction tableau:
                $$
                begin{array}{cccccccccccccccccccccccc}
                & & 15 & & 7 & & 1 & & 1 & & 7 & & 30 & & 7 & & 1 & & 1 & & 7 & & 30 & \
                \
                frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 15 }{ 1 } & & frac{ 106 }{ 7 } & & frac{ 121 }{ 8 } & & frac{ 227 }{ 15 } & & frac{ 1710 }{ 113 } & & frac{ 51527 }{ 3405 } & & frac{ 362399 }{ 23948 } & & frac{ 413926 }{ 27353 } & & frac{ 776325 }{ 51301 } & & frac{ 5848201 }{ 386460 } \
                \
                & 1 & & -4 & & 15 & & -15 & & 4 & & -1 & & 4 & & -15 & & 15 & & -4 & & 1
                end{array}
                $$



                $$
                begin{array}{cccc}
                frac{ 1 }{ 0 } & 1^2 - 229 cdot 0^2 = 1 & mbox{digit} & 15 \
                frac{ 15 }{ 1 } & 15^2 - 229 cdot 1^2 = -4 & mbox{digit} & 7 \
                frac{ 106 }{ 7 } & 106^2 - 229 cdot 7^2 = 15 & mbox{digit} & 1 \
                frac{ 121 }{ 8 } & 121^2 - 229 cdot 8^2 = -15 & mbox{digit} & 1 \
                frac{ 227 }{ 15 } & 227^2 - 229 cdot 15^2 = 4 & mbox{digit} & 7 \
                frac{ 1710 }{ 113 } & 1710^2 - 229 cdot 113^2 = -1 & mbox{digit} & 30 \
                frac{ 51527 }{ 3405 } & 51527^2 - 229 cdot 3405^2 = 4 & mbox{digit} & 7 \
                frac{ 362399 }{ 23948 } & 362399^2 - 229 cdot 23948^2 = -15 & mbox{digit} & 1 \
                frac{ 413926 }{ 27353 } & 413926^2 - 229 cdot 27353^2 = 15 & mbox{digit} & 1 \
                frac{ 776325 }{ 51301 } & 776325^2 - 229 cdot 51301^2 = -4 & mbox{digit} & 7 \
                frac{ 5848201 }{ 386460 } & 5848201^2 - 229 cdot 386460^2 = 1 & mbox{digit} & 30 \
                end{array}
                $$



                ====================================



                $$ sqrt { 106} = 10 + frac{ sqrt {106} - 10 }{ 1 } $$
                $$ frac{ 1 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{6 } = 3 + frac{ sqrt {106} - 8 }{6 } $$
                $$ frac{ 6 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{7 } = 2 + frac{ sqrt {106} - 6 }{7 } $$
                $$ frac{ 7 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{10 } = 1 + frac{ sqrt {106} - 4 }{10 } $$
                $$ frac{ 10 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{9 } = 1 + frac{ sqrt {106} - 5 }{9 } $$
                $$ frac{ 9 }{ sqrt {106} - 5 } = frac{ sqrt {106} + 5 }{9 } = 1 + frac{ sqrt {106} - 4 }{9 } $$
                $$ frac{ 9 }{ sqrt {106} - 4 } = frac{ sqrt {106} + 4 }{10 } = 1 + frac{ sqrt {106} - 6 }{10 } $$
                $$ frac{ 10 }{ sqrt {106} - 6 } = frac{ sqrt {106} + 6 }{7 } = 2 + frac{ sqrt {106} - 8 }{7 } $$
                $$ frac{ 7 }{ sqrt {106} - 8 } = frac{ sqrt {106} + 8 }{6 } = 3 + frac{ sqrt {106} - 10 }{6 } $$
                $$ frac{ 6 }{ sqrt {106} - 10 } = frac{ sqrt {106} + 10 }{1 } = 20 + frac{ sqrt {106} - 10 }{1 } $$



                Simple continued fraction tableau:
                $$
                begin{array}{cccccccccccccccccccccccccccccccccccccccc}
                & & 10 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & & 3 & & 2 & & 1 & & 1 & & 1 & & 1 & & 2 & & 3 & & 20 & \
                \
                frac{ 0 }{ 1 } & frac{ 1 }{ 0 } & & frac{ 10 }{ 1 } & & frac{ 31 }{ 3 } & & frac{ 72 }{ 7 } & & frac{ 103 }{ 10 } & & frac{ 175 }{ 17 } & & frac{ 278 }{ 27 } & & frac{ 453 }{ 44 } & & frac{ 1184 }{ 115 } & & frac{ 4005 }{ 389 } & & frac{ 81284 }{ 7895 } & & frac{ 247857 }{ 24074 } & & frac{ 576998 }{ 56043 } & & frac{ 824855 }{ 80117 } & & frac{ 1401853 }{ 136160 } & & frac{ 2226708 }{ 216277 } & & frac{ 3628561 }{ 352437 } & & frac{ 9483830 }{ 921151 } & & frac{ 32080051 }{ 3115890 } \
                \
                & 1 & & -6 & & 7 & & -10 & & 9 & & -9 & & 10 & & -7 & & 6 & & -1 & & 6 & & -7 & & 10 & & -9 & & 9 & & -10 & & 7 & & -6 & & 1
                end{array}
                $$



                $$
                begin{array}{cccc}
                frac{ 1 }{ 0 } & 1^2 - 106 cdot 0^2 = 1 & mbox{digit} & 10 \
                frac{ 10 }{ 1 } & 10^2 - 106 cdot 1^2 = -6 & mbox{digit} & 3 \
                frac{ 31 }{ 3 } & 31^2 - 106 cdot 3^2 = 7 & mbox{digit} & 2 \
                frac{ 72 }{ 7 } & 72^2 - 106 cdot 7^2 = -10 & mbox{digit} & 1 \
                frac{ 103 }{ 10 } & 103^2 - 106 cdot 10^2 = 9 & mbox{digit} & 1 \
                frac{ 175 }{ 17 } & 175^2 - 106 cdot 17^2 = -9 & mbox{digit} & 1 \
                frac{ 278 }{ 27 } & 278^2 - 106 cdot 27^2 = 10 & mbox{digit} & 1 \
                frac{ 453 }{ 44 } & 453^2 - 106 cdot 44^2 = -7 & mbox{digit} & 2 \
                frac{ 1184 }{ 115 } & 1184^2 - 106 cdot 115^2 = 6 & mbox{digit} & 3 \
                frac{ 4005 }{ 389 } & 4005^2 - 106 cdot 389^2 = -1 & mbox{digit} & 20 \
                frac{ 81284 }{ 7895 } & 81284^2 - 106 cdot 7895^2 = 6 & mbox{digit} & 3 \
                frac{ 247857 }{ 24074 } & 247857^2 - 106 cdot 24074^2 = -7 & mbox{digit} & 2 \
                frac{ 576998 }{ 56043 } & 576998^2 - 106 cdot 56043^2 = 10 & mbox{digit} & 1 \
                frac{ 824855 }{ 80117 } & 824855^2 - 106 cdot 80117^2 = -9 & mbox{digit} & 1 \
                frac{ 1401853 }{ 136160 } & 1401853^2 - 106 cdot 136160^2 = 9 & mbox{digit} & 1 \
                frac{ 2226708 }{ 216277 } & 2226708^2 - 106 cdot 216277^2 = -10 & mbox{digit} & 1 \
                frac{ 3628561 }{ 352437 } & 3628561^2 - 106 cdot 352437^2 = 7 & mbox{digit} & 2 \
                frac{ 9483830 }{ 921151 } & 9483830^2 - 106 cdot 921151^2 = -6 & mbox{digit} & 3 \
                frac{ 32080051 }{ 3115890 } & 32080051^2 - 106 cdot 3115890^2 = 1 & mbox{digit} & 20 \
                end{array}
                $$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Feb 1 at 19:09

























                answered Jan 31 at 23:17









                Will JagyWill Jagy

                104k5102201




                104k5102201






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095590%2fdemonstrate-that-these-two-pells-equations-have-no-integer-solutions%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith