Integral with respect to $x +$ constant
$begingroup$
Is this a valid expression:
$$int xd(x+5)$$
I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:
$$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$
Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$
calculus algebra-precalculus
$endgroup$
add a comment |
$begingroup$
Is this a valid expression:
$$int xd(x+5)$$
I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:
$$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$
Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$
calculus algebra-precalculus
$endgroup$
add a comment |
$begingroup$
Is this a valid expression:
$$int xd(x+5)$$
I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:
$$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$
Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$
calculus algebra-precalculus
$endgroup$
Is this a valid expression:
$$int xd(x+5)$$
I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:
$$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$
Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$
calculus algebra-precalculus
calculus algebra-precalculus
asked Feb 1 at 5:29
SladeSlade
78111
78111
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Notice that you have $-12.5+C$, which is just another constant.
$endgroup$
$begingroup$
Oh, that makes a lot of sense now. Thanks!
$endgroup$
– Slade
Feb 1 at 5:59
add a comment |
$begingroup$
Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)
$$begin{align}
int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
&= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
&= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
&= int frac{xe^{-x^2}d(-x^2)}{-2x}\
&= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
&= color{green}{-frac{1}{2}int e^udu} &[2]\
&= -frac{1}{2}e^u + C\
&= -frac{1}{2}e^{-x^2} + C\
end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095860%2fintegral-with-respect-to-x-constant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that you have $-12.5+C$, which is just another constant.
$endgroup$
$begingroup$
Oh, that makes a lot of sense now. Thanks!
$endgroup$
– Slade
Feb 1 at 5:59
add a comment |
$begingroup$
Notice that you have $-12.5+C$, which is just another constant.
$endgroup$
$begingroup$
Oh, that makes a lot of sense now. Thanks!
$endgroup$
– Slade
Feb 1 at 5:59
add a comment |
$begingroup$
Notice that you have $-12.5+C$, which is just another constant.
$endgroup$
Notice that you have $-12.5+C$, which is just another constant.
answered Feb 1 at 5:40
高田航高田航
1,365418
1,365418
$begingroup$
Oh, that makes a lot of sense now. Thanks!
$endgroup$
– Slade
Feb 1 at 5:59
add a comment |
$begingroup$
Oh, that makes a lot of sense now. Thanks!
$endgroup$
– Slade
Feb 1 at 5:59
$begingroup$
Oh, that makes a lot of sense now. Thanks!
$endgroup$
– Slade
Feb 1 at 5:59
$begingroup$
Oh, that makes a lot of sense now. Thanks!
$endgroup$
– Slade
Feb 1 at 5:59
add a comment |
$begingroup$
Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)
$$begin{align}
int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
&= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
&= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
&= int frac{xe^{-x^2}d(-x^2)}{-2x}\
&= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
&= color{green}{-frac{1}{2}int e^udu} &[2]\
&= -frac{1}{2}e^u + C\
&= -frac{1}{2}e^{-x^2} + C\
end{align}$$
$endgroup$
add a comment |
$begingroup$
Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)
$$begin{align}
int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
&= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
&= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
&= int frac{xe^{-x^2}d(-x^2)}{-2x}\
&= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
&= color{green}{-frac{1}{2}int e^udu} &[2]\
&= -frac{1}{2}e^u + C\
&= -frac{1}{2}e^{-x^2} + C\
end{align}$$
$endgroup$
add a comment |
$begingroup$
Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)
$$begin{align}
int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
&= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
&= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
&= int frac{xe^{-x^2}d(-x^2)}{-2x}\
&= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
&= color{green}{-frac{1}{2}int e^udu} &[2]\
&= -frac{1}{2}e^u + C\
&= -frac{1}{2}e^{-x^2} + C\
end{align}$$
$endgroup$
Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)
$$begin{align}
int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
&= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
&= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
&= int frac{xe^{-x^2}d(-x^2)}{-2x}\
&= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
&= color{green}{-frac{1}{2}int e^udu} &[2]\
&= -frac{1}{2}e^u + C\
&= -frac{1}{2}e^{-x^2} + C\
end{align}$$
edited Feb 2 at 13:05
answered Feb 2 at 12:56
John JoyJohn Joy
6,29911827
6,29911827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095860%2fintegral-with-respect-to-x-constant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown