Integral with respect to $x +$ constant












1












$begingroup$


Is this a valid expression:
$$int xd(x+5)$$



I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:



$$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$



Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Is this a valid expression:
    $$int xd(x+5)$$



    I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:



    $$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$



    Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Is this a valid expression:
      $$int xd(x+5)$$



      I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:



      $$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$



      Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$










      share|cite|improve this question









      $endgroup$




      Is this a valid expression:
      $$int xd(x+5)$$



      I am trying to calculate the value using a u-sub, of $u = x + 5$. So then $du = d(x+5)$ and so the result is:



      $$int (u - 5)du= frac{u^2}{2} - 5u + C = frac{(x+5)^2}{2} - 5(x+5) +C = frac{x^2}{2} -12.5 + C $$



      Or is it correct to just do $d(x+5) = dx$ from the beginning and calculate $$int xd(x+5) = int xdx$$







      calculus algebra-precalculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 1 at 5:29









      SladeSlade

      78111




      78111






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Notice that you have $-12.5+C$, which is just another constant.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Oh, that makes a lot of sense now. Thanks!
            $endgroup$
            – Slade
            Feb 1 at 5:59



















          1












          $begingroup$

          Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)



          $$begin{align}
          int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
          &= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
          &= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
          &= int frac{xe^{-x^2}d(-x^2)}{-2x}\
          &= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
          &= color{green}{-frac{1}{2}int e^udu} &[2]\
          &= -frac{1}{2}e^u + C\
          &= -frac{1}{2}e^{-x^2} + C\
          end{align}$$






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095860%2fintegral-with-respect-to-x-constant%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Notice that you have $-12.5+C$, which is just another constant.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Oh, that makes a lot of sense now. Thanks!
              $endgroup$
              – Slade
              Feb 1 at 5:59
















            2












            $begingroup$

            Notice that you have $-12.5+C$, which is just another constant.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Oh, that makes a lot of sense now. Thanks!
              $endgroup$
              – Slade
              Feb 1 at 5:59














            2












            2








            2





            $begingroup$

            Notice that you have $-12.5+C$, which is just another constant.






            share|cite|improve this answer









            $endgroup$



            Notice that you have $-12.5+C$, which is just another constant.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 1 at 5:40









            高田航高田航

            1,365418




            1,365418












            • $begingroup$
              Oh, that makes a lot of sense now. Thanks!
              $endgroup$
              – Slade
              Feb 1 at 5:59


















            • $begingroup$
              Oh, that makes a lot of sense now. Thanks!
              $endgroup$
              – Slade
              Feb 1 at 5:59
















            $begingroup$
            Oh, that makes a lot of sense now. Thanks!
            $endgroup$
            – Slade
            Feb 1 at 5:59




            $begingroup$
            Oh, that makes a lot of sense now. Thanks!
            $endgroup$
            – Slade
            Feb 1 at 5:59











            1












            $begingroup$

            Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)



            $$begin{align}
            int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
            &= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
            &= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
            &= int frac{xe^{-x^2}d(-x^2)}{-2x}\
            &= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
            &= color{green}{-frac{1}{2}int e^udu} &[2]\
            &= -frac{1}{2}e^u + C\
            &= -frac{1}{2}e^{-x^2} + C\
            end{align}$$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)



              $$begin{align}
              int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
              &= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
              &= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
              &= int frac{xe^{-x^2}d(-x^2)}{-2x}\
              &= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
              &= color{green}{-frac{1}{2}int e^udu} &[2]\
              &= -frac{1}{2}e^u + C\
              &= -frac{1}{2}e^{-x^2} + C\
              end{align}$$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)



                $$begin{align}
                int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
                &= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
                &= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
                &= int frac{xe^{-x^2}d(-x^2)}{-2x}\
                &= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
                &= color{green}{-frac{1}{2}int e^udu} &[2]\
                &= -frac{1}{2}e^u + C\
                &= -frac{1}{2}e^{-x^2} + C\
                end{align}$$






                share|cite|improve this answer











                $endgroup$



                Of course it's a valid expression. So is this. Note that [1] and [2] are the same expression. :-)



                $$begin{align}
                int xe^{-x^2}dx &= int frac{xe^{-x^2}dx}{1}\
                &= int frac{xe^{-x^2}dx}{1}cdotfrac{frac{d(-x^2)}{dx}}{frac{d(-x^2)}{dx}}\
                &= int frac{xe^{-x^2}dxcdotfrac{d(-x^2)}{dx}}{-2x}\
                &= int frac{xe^{-x^2}d(-x^2)}{-2x}\
                &= color{red}{-frac{1}{2}int e^{-x^2}d(-x^2)} &[1]\
                &= color{green}{-frac{1}{2}int e^udu} &[2]\
                &= -frac{1}{2}e^u + C\
                &= -frac{1}{2}e^{-x^2} + C\
                end{align}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Feb 2 at 13:05

























                answered Feb 2 at 12:56









                John JoyJohn Joy

                6,29911827




                6,29911827






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095860%2fintegral-with-respect-to-x-constant%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]